Skip to main content

Scientific Opinion on the risks for human health related to the presence of tetrahydrocannabinol (THC) in milk and other food of animal origin

EFSA Journal logo
Wiley Online Library

Meta data

Abstract

The European Food Safety Authority (EFSA) was asked to deliver a scientific opinion on the risks for human health related to the presence of tetrahydrocannabinol (THC) in milk and other food of animal origin. THC, more precisely delta-9-tetrahydrocannabinol (Δ9-THC) is derived from the hemp plant Cannabis sativa. In fresh plant material, up to 90 % of total Δ9-THC is present as the non-psychoactive precursor Δ9-THC acid. Since few data on Δ9-THC levels in foods of animal origin were available, the Panel on Contaminants in the Food Chain (CONTAM Panel) estimated acute human dietary exposure to Δ9-THC combining different scenarios for the presence of Δ9-THC in hemp seed-derived feed materials. Acute exposure to Δ9-THC from the consumption of milk and dairy products ranged between 0.001 and 0.03 µg/kg body weight (b.w.) per day in adults, and 0.006 and 0.13 µg/kg b.w. per day in toddlers. From human data, the CONTAM Panel concluded that 2.5 mg Δ9-THC/day, corresponding to 0.036 mg Δ9-THC/kg b.w. per day, represents the lowest observed adverse effect level. By applying an overall uncertainty factor of 30, an acute reference dose (ARfD) of 1 μg Δ9-THC/kg b.w. was derived. The exposure estimates are at most 3 % and 13 % the ARfD, in adults and toddlers, respectively. The CONTAM Panel concluded that exposure to Δ9-THC via consumption of milk and dairy products, resulting from the use of hemp seed-derived feed materials at the reported concentrations, is unlikely to pose a health concern. A risk assessment resulting from the use of whole hemp plant-derived feed materials is currently not feasible due to a lack of occurrence data. The CONTAM Panel could also not conclude on the possible risks to public health from exposure to Δ9-THC via consumption of animal tissues and eggs, due to a lack of data on the potential transfer and fate of Δ9-THC.