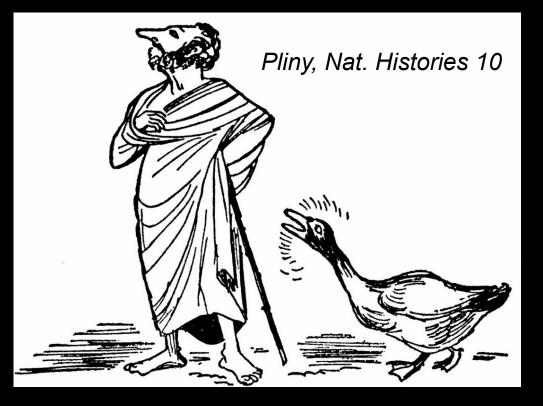
Metabolic programming: Implications for feeding infants and children

Professor Mary Fewtrell UCL Institute of Child Health, London, UK

What is 'programming'?

Nutritional programming in humans


Implications for practice

Stimulus at a critical period

Permanent change in structure or function

Lucas

The general concept has been recognised for centuries

Programming stimuli can be

endogenous

eg. hormones

environmental

eg. temperature, light, drugs, contaminants, nutrients

Critical window

Post-natal effects can be produced following 'normal' pregnancy

Both under and over-nutrition can programme later outcome

Programmed effects may not appear until later in life

Programmed effects can differ by gender

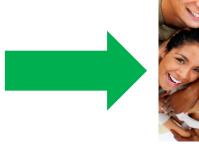
Animal models show nutritional programming of a range of important outcomes

- blood pressure
- cholesterol metabolism
- glucose tolerance
- obesity
- behaviour and learning
- Iongevity

Other outcomes

Nutritional programming in humans

Critical windows


Infant & Child Nutrition

Foods / nutrients

Observational studies

Compare outcomes in subjects according to early diet or growth

Experimental studies – randomised trials

Demonstrate causal relationship between intervention and outcome

THE GOLD STANDARD

RCT not always ethical or feasible

Breast-feeding versus formula-feeding

Cohort attrition / Loss to follow-up

selection bias

loss of power

Attrition in long-term nutrition research studies: a commentary by the ESPGHAN Early Nutrition Research Working Group. JPGN; in press

Programming of CVD risk and obesity in humans

Two systematic reviews / meta analyses

Evidence on the long-term effects of breastfeeding: Systematic reviews and meta-analyses (Horta et al. 2007) WHO Library Cataloguing-in-Publication Data ISBN 978 92 4 159523 0

Breastfeeding and Maternal and Infant Health Outcomes in Developed Countries (Ip et al. 2007) Evidence Report/Technology Assessment Number 153 USA: Agency for Healthcare Research and Quality 2007

Experimental study 1

Randomised trial in 926 preterm infants 1982-1985

Banked donor breast milk v preterm formula

..... as sole diet or supplement to maternal breast milk

Experimental study 2

PROBIT study

Cluster randomised trial of a breastfeeding promotion intervention *n*=17 046 *mother-infant pairs from 31 centres*

	Some BF	More BF
Any BF at 3mo	60.0%	72.7%
EBF at 3mo	6.4%	43.3%
Any BF at 6mo	24.4%	36.1%
EBF at 6mo	0.6%	7.9%
Any BF at 12mo	11.4%	19.7%

Belarus

Kramer et al

Breastfeeding and metabolic outcomes

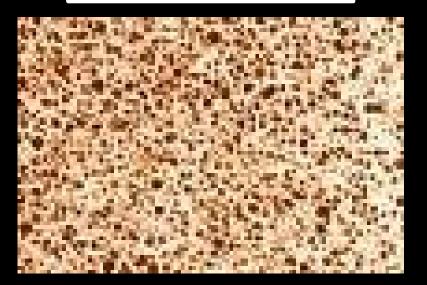
	WHO	US	PROBIT RCT 6,11yr	Preterm RCT 15yr
Blood pressure	↓ (1.19 mmHg)	↓ (1.5 mmHg)	no	↓ (3-4mmHg)
Plasma lipids	↓ (0.18mmol/l)	no	no	↓ (14%)
Overweight / obesity	↓ (OR 0.78)	↓ (4%/mo)	no	no

Are the effect sizes clinically relevant?

2mm Hg reduction in BP reduces

- hypertension 16%
- coronary artery disease 6%
- stroke 15%

prevents 67,000 coronaries and 34,000 strokes/yr in USA alone


Lowering cholesterol by 10%

 \downarrow CVD incidence by 25%


 \downarrow CVD mortality by 13-14%

How does breastfeeding reduce the risk of cardiovascular disease and obesity?

Specific factors in breast milk?

Slower early growth? irth to 36 months: Boys -for-age and Weight-for-age percentiles http://tabycarenting.about.com

'Grow now – pay later'

Metcalfe *TEE 2001;16:254*

Growth acceleration hypothesis

An adverse long-term effect of faster growth is CVD

- Consistent with 'fetal origins' hypothesis
- Early post-natal period likely to be very important
- Explains the effect of infant nutrition

Experimental evidence in preterm infants

13-15 yrs

Slower early growth

Improved vascular function (FMD)

 \downarrow Insulin resistance

Experimental evidence in term infants

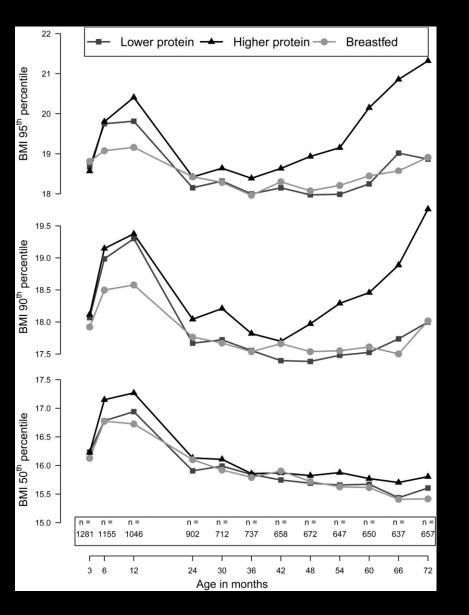
Term SGA infants

RCT nutrient-enriched v standard formula Promoted early growth

Fat mass at 5-8 yrs

Effect explained by more rapid early growth

Circulation 2007;115(2):213-20


Association between faster weight gain in infancy and higher

fat mass also found in breast-fed

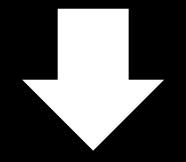
reference group

Normal weight term infants

Infant randomised to higher protein formulas had significantly higher BMI at 6 yrs

RR of obesity 2.43

Koletzko et al. AJCN 2009;89;1836 Weber et al. AJCN 2014;99:104 **Epidemiological studies**


Rapid infant growth associated with

- Increased obesity risk
- Greater insulin resistance
- Greater risk of CVD

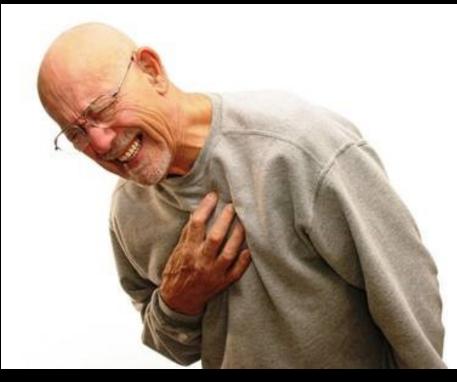
20% of the risk of overweight explained by high infant weight gain 0-4 mo

Implications for practice

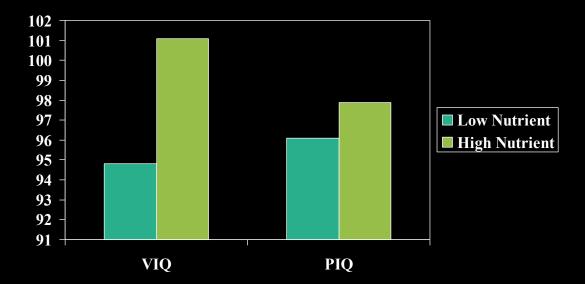
Effect of infant feeding on later metabolic risk probably relates to early growth pattern

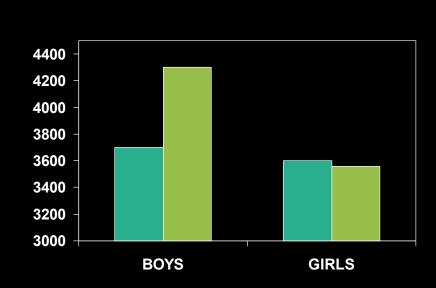
Avoid fast infant weight gain

Cultural bias favours faster infant growth Needs re-appraisal

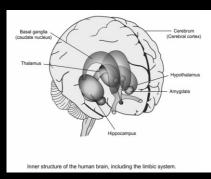

Modify breast milk substitutes Lower protein content

Other considerations

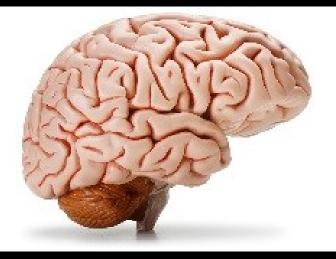



Early nutrition programmes cognitive outcome and brain structure in preterm infants

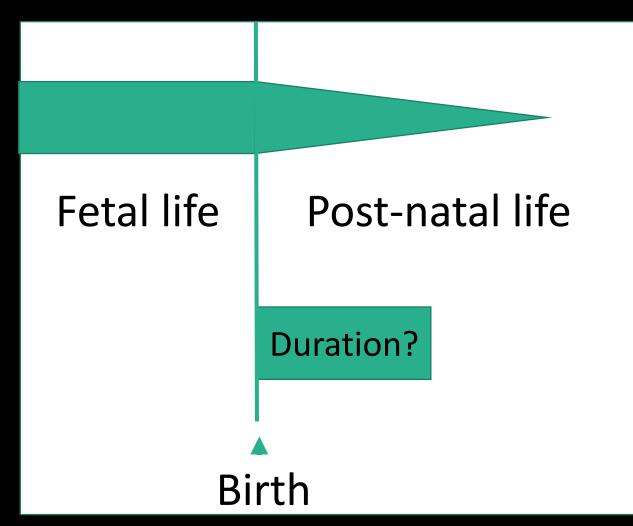
Verbal IQ at 7 and 15 yrs in boys


Lucas et al. BMJ. 1998 ;317:1481-7

Caudate nucleus volume at 15 yrs


Preterm infants are exquisitely sensitive to effects of early nutrition on the brain

Term infants?



Nutritional interventions - small effects, if any

Different critical windows for different outcomes?

Promote growth?

Survival Brain development Bone health

Promote growth?

XCVD risk factorsObesity

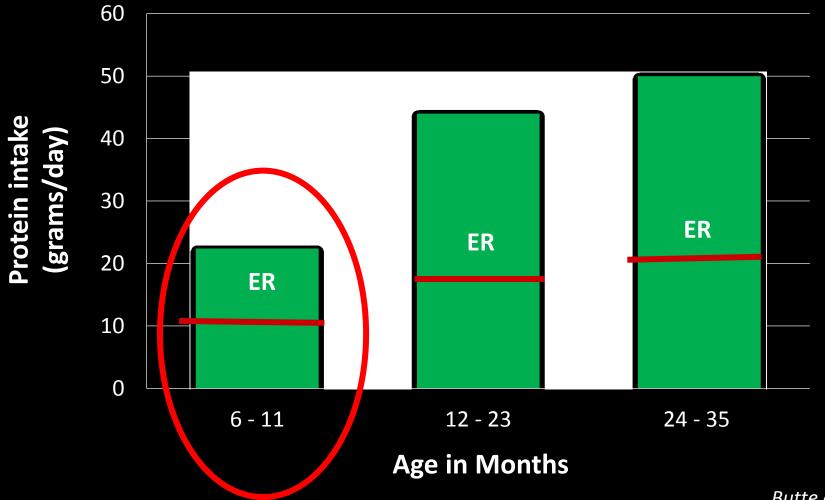
Does the critical window for metabolic programming extend to the complementary feeding period?

No clear association between the age of introduction of solid foods and obesity

Some evidence that introduction at or before 4 months may increase the risk of overweight

Moorcroft et al. MCN 2011;7:3 Pearce et al. Int J Obesity 2013;37:1295 Huh et al. Pediatr 2011;127:e544 Moss & Yeaton. Mat Child Health J. 2014:18:1224 Jonsdottir et al. Acta Paediatr 2014;103:105

Is high protein intake during CF a risk factor for obesity?



9-12 mo infants from4 EU countries

PE% 15.0

Michaelsen KF, Nutr. Met & CVD 2012;22:781

Average Protein Intake (grams/d) : FITS 2008 Compared to Estimated Requirements

Butte et al. Am Diet Assn 2010

Are all proteins equivalent?

Gunther et al. AJCN 2007;86:1765 Thorisdottir. Ann Nutr Metab 2013;63:145

Do critical windows vary in different environments?

In stable environments, critical windows may close earlier?

Wells JC. Evol, Med & Pub Health 2014

Higher birthweight faster linear growth from 0 to 2 years

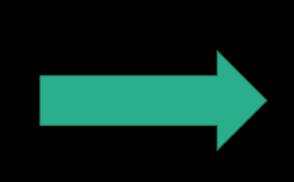
Metabolic risk

- Large gains in human capital
- Little association with adult CVD

Rapid infant weight gain

↑ later fat mass

High income


Low income

later lean
mass > fat
mass

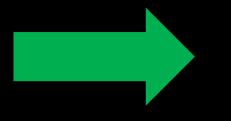
Wells et al. Proc Nut Soc 2007;66:423

Identifying and targeting 'high risk' groups

Implications for infant and child nutrition?

Target for interventions to avoid rapid weight gain and overfeeding

Appetite


Gemini twin cohort >2400 UK families

Genetic v environmental effects

Appetite traits are highly heritable:Slowness of eating84%Satiety responsiveness72%Food responsiveness59%Enjoyment of food53%

Infant appetite

Van Jaarsveld et al. AJCN 2011;94:1562

Conclusions: What should be advised based on current evidence?

Avoid rapid early weight gain

'Whole diet' approach

Breast-feeding – certainly for the first 4 months

Infant formulas – lower protein

Complementary feeding – avoid excessive weight gain

Responsive feeding

Good nutrition important for optimal brain outcomes

Promote growth

Human milk + fortifiers Preterm formula

Further improvements in breast milk substitutes

Programming effects of specific nutrients eg. different protein sources during CF

Refine recommendations and interventions for different groups / individuals infants of obese mothers environmental factors appetite traits genotypes epigenetics

Thank you

