The role of population dynamics In
ERASs to protect biodiversity

- T =

Michael Bonsall
Mathematical Ecology Research Group,
Department of Zoology, University of Oxford
EFSA Parma, 27 Nov 2012

@

mathematical

ecology




Population-level dynamics

Population change is a consequence of changes in
births, deaths and dispersal.

N, = N _, +births —deaths + immigrants —emigrants
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Population-level dynamics

Given the complexity in births, deaths and
dispersal

N, = N,_, +births —deaths -+ immigrants —emigrants

Any ERA should be proportionate and pragmatic to
the technology being implemented (ACRE 2013;
Report 3)
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Plan

O Sensitivity (& Elasticity) Analysis
= A net growth rate (A) approach

O Trophic and complex species interactions
= Linking performance and dynamics (ragwort-cinnabar moth)

O Rarity
= Definitions
= High Brown Fritillary (diffusive rarity)
= Population dynamics consequences (low sample bias)

0 Guidance for ERA
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Net-Growth Rate (A) Analysis
T T e

@

mathematical

ecology




Net growth rate — sensitivity analysis

Simple logistic population growth

dN(t) K-N(@))
- _rN(t)[ ” jﬂN(t)

1 dN(t)_r[K—N(t)j_
N() dt K -

1 dN(t)  rK-—rN()
N() dt K

1 dN() . IN(D)
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Net growth rate — sensitivity analysis
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Net growth rate — sensitivity analysis
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Net growth rate — sensitivity analysis
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Linking performance and dynamics
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Sensitivity analysis — trophic-interactions

dP(t)
dt

=rP(t) f (P(t,2)) —aP(t)H(t)

dl;llt(t) =caP (t)H(t) —uH (t)g(H(t, 7))
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Sensitivity analysis — trophic-interactions

A—rf'(P(t, 7)) aP (1)
—caH (1) A+ug'(H(t, 7))
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Cinnabar Moth —
Ragwort Dynamics
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Log abundance

Ragwort — Cinnabar Moth

(Meijendel, The Hague, The Netherlands)
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(Silwood Park, Ascot, UK)
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Moth dynamics in Meijendel =
moth population size (@ time t-1)
+ moth population size (@ time t-2)
+ plant population size (@ time 1-2)
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Plant dynamics in Meijendel =
plant population size (@ time t-1)
+ plant population size (@ fime -
2)
+ moth population size (@ time t-

1)




Moth dynamics in Silwood Park =
moth population size (@ time

t-1)
| Plant dynamics in Silwood Park =
o . N T T T plant population size (@
o Time 1"'1)
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Complex species interactions

Pteromalidae Eulophidae Braconidae
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Rarity
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Rarity

Geographic
Distribution

Habitat Broad Restricted Broad Restricted
Specificity

Common Habitat Endemics
Specialist
Truly Sparse Classic
Rarity

Following Rabinowitz (1981) classification of rarity based on geographic distribution, population
size and habitat specificity
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Example population-level models for rarity

dN (1) _

=rN (t)[K — N(t)j[l—[ arc D+a)
dt K N(t)+c
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N (T) = (I) N og(N; (X)) — F(N, (X, 2))N, (x)dx

N, (T +1) = o-i(Ni(T)+vijZ(Ni(T)— Nj(T))j R -




High Brown Fritillary
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High Brown Fritillary

Allee Effect
Density
40% "IDependence

Allee Effect &
Immigration

34%
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Rarity: consequences for ERAs?

O Low sample bias

= Affects demographic processes; detection of biodiversity
shifts.

O Ecological constraints

= Affects bias in population level processes; detection of
biodiversity shifts.

O Evolutionary constraints

= e.g. frequency dependence might favour reproductive
modes to buffer environmental variability.
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Points for Thought

O NGR analysis allow ALL demographic and population processes
to be integrated....

O ...however, rapidly complicated. So...

O ..in an ERA

= Objective function (define goals)....maximize (minimize) with
respect to constraints (ecological, biological, economic)

= Adaptive management

O ... so that we have proportionate responses to technologies
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Questions?
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