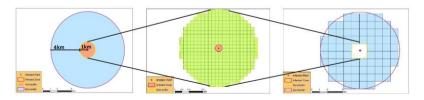


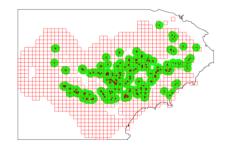
Optimization of the delimiting survey strategies for *Xylella fastidiosa* in the demarcated area in Alicante

E. Lázaro¹, D. Conesa², A. López-Quílez², V. Dalmau³, A. Ferrer-Matoses³ and A. Vicent¹

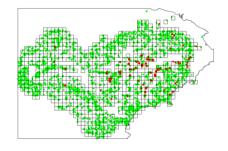

¹ Centre de Protecció Vegetal i Biotecnologia, IVIA

² Departament d'Estadística i Investigació Operativa, UV

³ Servei de Sanitat Vegetal, GVA


☐ Decision (EU) 2015/789:

- **Extent:** at least 5 km surrounding the infected zone (two zones)
- Epidemiological units definition:
 - first kilometer → 0.01 km² grid
 - the rest of the zone → 1 km² grid
- Inspection and sampling:
 - Visual inspection of all the epidemiological units
 - Sampling of symptomatic plants and asymptomatic around

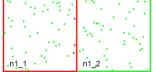

Source: DEFRA, UK.

- ☐ First detection and demarcation on July 2017
- **2018 official delimiting survey** (up to January 2019) ⇒ Reference database
- **83,300 has.**
- 134 infected zones
- **552** cells of 1 km²
- 28103 cells of 0.01 km²
- 8142 samples
- **237 positives** vs. **7,905** negatives

- ☐ First detection and demarcation on July 2017
- 2018 official delimiting survey (up to January 2019) ⇒
 Reference database
- 33,300 has.
- 134 infected zones
- **552** cells of 1 km²
- 28103 cells of 0.01 km²
- ≥ 8142 samples
- 237 positives vs. 7,905 negatives

Alicante demarcated area

Leaves with apical scald and chlorotic zone

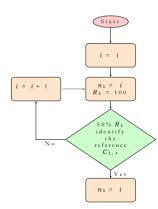

Burning generalized symptoms

 □ Development of an alternative delimiting survey → optimisise inspection and sampling intensity

 Assessment the performance of the alternative delimiting survey → sampling intensity

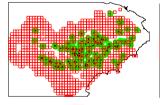
- <u>Improve</u> the efficiency and <u>keep</u> the efficacy → **optimization** of
 - Inspection intensity (number of cells)
 - Sampling intensity(samples/cell)
- □ Sequential adaptive strategy
 - Sequential: to organise in different timeframes the survey in the different resolutions
 - Adaptive: to tailor the inspection and sampling intensity for each survey resolution depending on the previous observed values
 - Three-phase design: 1 0.25 0.01 km²
 - Two-phase design: 1 0.01 km²

- \square C₁, C_{0.25}, C_{0.01} \Rightarrow number of cells to be inspected (inspection intensity)
- \Box C_{0.25} = C_{1,+} × 4 and C_{0.01} = C_{0.25,+} × 25
- \square n_1 , $n_{0.25}$, $n_{0.01} \Rightarrow$ samples/cell (sampling intensity)
- $\square n_1, n_{0.25}, n_{0.01} \Rightarrow \text{optimisation algorithm}$

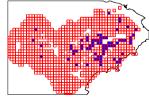


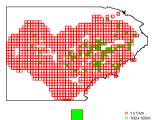
Phase 1. For all 1 km² cells:
Phase 2. For all 1 km² positive cells and 0.25 km² resolution. Phase 3. For all 0.25 km² positive cells and 0.01 km² resolution.

☐Find an optimum sampling intensity (n_1) given that:


- Grid resolution: 1 x 1 km
- Condition 1: all 1 km²cells must be surveyed
- Condition 2: all 1 km² cells must be sampled
- $\stackrel{\triangleright}{R}_1=100$ random sampling configurations
- C_{1,+}: 1 km² positive cells found in the reference database

Inspection intensity (number of cells) for the current, the three-phase and the two-phase delimiting strategies


Grid size	Decision	Three-phase	Two-phase
1 km ²	552	833	833
0.25 km ²		284	
0.01 km ²	28,103	2,225	7,100


Decision Three-phase Two-phase

1 x 1 km

□ 100 x 100 m

Sampling intensity (n) (samples/cell) for the three-phase and the two-phase delimiting strategies

	Grid size	R ₁	R _{0.25}	R _{0.01}	C ₊ (+ cells)	n (samples/cell)
		50	-	-	71	51
	1 km ²	25	-	-	70	46
		15	-	-	69	40
Three-phase	0.25 km ²		50	-	89	45
		50	25	-	89	41
			15	-	88	37
				50	161	14
	0.01 km ²	50	50	25	160	13
			50	15	160	13
		50	-	-	71	51
	1 km ²	25	-	-	70	46
		15	-	-	69	40
Two-phase			-	50	161	15
i wo-pilase	0.01 km ²		-	25	160	13
		50	-	15	159	12

Survey effort (N = C x n) (total samples) for the current, the three-phase and the two-phase delimiting strategies

	Grid size	C (cells)	n (samples/cell)	N (Total samples)
	1 km ²	552	51	28,152
Decision	0.01 km ²	28,103	15	421,545
				449,697
Three-phase	1 km ²	833	51	42,483
	0.25 km ²	284	45	12,780
	0.01 km ²	2,225	14	31,150
				86,413
Two-phase	1 km ²	833	51	42,483
	0.01 km ²	7,100	15	106,500
				148,983

- ☐ Development of an alternative delimiting survey
 - $\,\rightarrow\,$ optimisise inspection and sampling intensity

□ Assessment the performance of the alternative delimiting survey → sampling intensity

	timates	loity iii iiiola	J1100
3	Sampling intensity (samples/cell) ⇒ delimiting strategy	output of the	alternative

Aim: Access the effect of sampling intensity in incidence

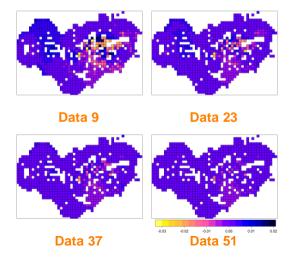
- Incidence (proportion of infected plants per 1 km² cell) ⇒ Bayesian hierarchical spatial model
- Methodology: Compare incidence estimates between the reference database (2018 official inspection) and different data subsets created limiting the maximum sampling intensity value

- ☐ Data subsets from the reference database
 - Limit sampling intensity (samples/cell) according to a reference value
 - Reference values
 - Data 9 (sampling intensity constrain to 9 samples/cell)
 - Data 23 (sampling intensity constrain to 23 samples/cell)
 - Data 37 (sampling intensity constrain to 37 samples/cell)
 - Data 51 (sampling intensity constrain to 51 samples/cell) ⇒ output of the alternative delimiting strategy
 - Simulate 100 replicates for each data subset according a random sampling scheme

Incidence modelling ⇒ Bayesian hierarchical spatial model

 $Y_i \sim \text{Binomial}(m_i, \pi_i) \quad i = 1, \dots, n,$

$$egin{array}{ll} logit(\pi_i) &= oldsymbol{X}_ieta + oldsymbol{v}_i + oldsymbol{u}_i, \ v_i|v_j &\sim \ \mathsf{N}\left(rac{1}{k_i}\sum_{i\sim j}v_j,rac{1}{ au_vk_i}
ight) & i
eq j, \ u_i &\sim \ \mathsf{N}(0, au_u) & i = 1,\dots,n, \ eta_j &\sim \ \mathsf{N}(\mu = 0, au = 0.001) & j = 0,\dots,M, \ log(au_v) &\sim \ \mathsf{logGamma}(1,5\cdot 10^{-5}), \ log(au_u) &\sim \ \mathsf{logGamma}(1,5\cdot 10^{-5}). \end{array}$$


Model selection of the reference database fit ⇒ WAIC and CPO criteria

Selected model:

$$Y_i \sim \text{Binomial}(m_i, \pi_i)$$
 $logit(\pi_i) = \beta_0 + \mathbf{v}_i$ $i = 1, ..., n$

Alternative delimiting survey assessment ⇒ sampling intensity **Incidence:** proportion of infected plants in a 1 km² Mean of the posterior distribution of the incidence Comparison between the reference database and the data subsets estimates (averaged) \Rightarrow Bias: $\overline{\pi}_{i,ref}$ - $\overline{\pi}_{i,subset}$ Data 9 Data 23 0.08 Data 37 Data 51

- Standard deviation of the posterior distribution of the incidence
 - Comparison between the reference database and the data subsets estimates (averaged) \Rightarrow **Bias:** $sd_{\pi_i(ref.)} sd_{\pi_i(subset)}$

- ☐ The alternative delimiting strategy in Alicante demarcated area:
 - Sequences inspection and sampling in time considering different spatial resolution sizes → logistically more feasible
 - allows delimiting the extension of the disease in larger space resolutions while demarcating infected areas in finer resolutions
 - improves inspection intensity at the 0.01 km² grid size
 - 2,225 and 7,100 cells (Three-phase and Two-phase)
 - 28,103 cells (Decision (EU) 2015/789)
 - improves survey efforts
 - 86,413 and 148,983 samples (Three-phase and Two-phase)
 - 449,697 samples (Current)
 - inds an optimum sampling intensity value for 1 km² resolution (51 samples/cell) that seems to be an adequate reference value

Thank you!

Horizon 2020 projects (European Union): POnTE (Pest Organisms Threatening Europe), No 635646, and XF-ACTORS (Xylella Fastidiosa Active Containment Through a multidisciplinary-Oriented Research Strategy), No 727987, and the project E-RTA 2017-00004-C06-01 FEDER INIA-AEI Ministerio de Economía y Competitividad and Organizacio'n Interprofesional del Aceite de Oliva Espan'ol, Spain.