

2ND EUROPEAN CONFERENCE ON XYLELLA FASTIDIOSA: HOW RESEARCH CAN SUPPORT SOLUTIONS

Ajaccio 29th - 30th October 2019

OPTIMIZATION OF SAMPLING AND TESTING PROCEDURES FOR DETECTING XYLELLA FASTIDIOSA IN LARGE LOTS OF PLANT FOR PLANTING AND NURSERY STOCKS

<u>Loconsole G.¹</u>, Zicca S.², Altamura G.², Manco L.¹, El Hatib O.³, Potere O.¹, Susca L.¹, Elicio V.⁴, Trisciuzzi N.⁵, Boscia D.², Savino V.N¹, Saponari M.²

¹Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Italy

²Istituto per la Protezione Sostenibile delle Piante, Italy

³Mediterranean Agronomic Institute of Bari-CIHEAM, Valenzano (BA), Italy

⁴Agritest S.r.l. Valenzano (BA), Italy

⁵Centro di Ricerca, Formazione e Sperimentazione in Agricoltura "Basile Caramia" (CRSFA), Locorotondo (BA), Italy

Polyphagous, colonizes 563 host species (EFSA, 2018)

Different subspecies and genotypes, extensive list of susceptible species, spittlebugs vector in EU/Med

Often detected on plants for planting imported into or moved between EU countries, particularly on coffee (Coffea spp.). (updating on EUROPHYT) Most relevant pathway for introduction of X. fastidiosa: the importation of plants for planting and infectious insects (vectors)

Plants for planting considered a high risk of pest introduction:

- the pest can survive and multiply on living hosts
- once at destination can transfer to a suitable host in appropriate conditions, if plants are grown outdoors.

Phytosanitary measures in the EU

- Regulated as a quarantine in EU
- Decision (EU) 2015/789 and amendments

 monitoring programs mandatory in the EU countries

Strict regulations [Decision (EU) 2015/789, amended by Decisions (EU) 2017/2352 and 2018/1511] for over 300 plant species

INSPECTION:

- of import at plant consignments
- At production places
- For movement inside and out demarcated areas.

Coffea, Lavandula dentata L., Nerium oleander L., Olea europaea L., Polygala myrtifolia L., Prunus dulcis (Mill.)

Moved/introduced in the EU if grown in a site subjected to annual official inspection and sampling, taking into account:

- > the technical guidelines for the survey of Xylella fastidiosa (Commission website)
- ➤ The international standards (ISPM-31) to confirm the absence of the specified organism, using a sampling scheme able to identify with 99% reliability the level of presence of infected plants of 5%
- > the specified organism shall be screened by one test
- > prior to its first movement out of its production site, lot of plants of Polygala myrtifolia L. shall be subjected to official visual inspection and sampling

MOVEMENT OF SPECIFIED PLANTS FROM THE DEMARCATED AREA

using a sampling scheme able to identify with 99% reliability a level of presence of infected plants of 1% in accordance with international standards, and targeting symptomatic plants, as well as asymptomatic plants in the proximity of the symptomatic ones

Table 1. Table of minimum sample sizes for 95% and 99% confidence levels at varying levels of detection according to lot size, hypergeometric distribution

Number of units	P = 95% (confidence level)				P = 99% (confidence level)					
in lot)									
	% level of detection × efficacy of detection			% level of detection × efficacy of detection						
	5	2	1	0.5	0.1	5	2	1	0.5	0.1
25	24*	-	-	-	-	25	-		-	-
50	39*	48	-	-	-	45*	50	-	-	-
100	45	78	95	-	-	59	90	99	-	-
200	51	105	155	190	-	73	136	180	198	-
300	54	117	189	285*	-	78	160	235	297*	-
400	55	124	211	311	-	81	174	273	360	-
500	56	129	225	388*	-	83	183	300	450*	-
600 700	56 57	132 134	235 243	379 442*	-	84 85	190 195	321 336	470 549*	-
800	57	136	249	421	-	85	199	349	546	-
900	57	137	254	474*	-	86	202	359	615*	-
1 000	57	138	258	450	950	86	204	368	601	990
2 000	58	143	277	517	1553	88	216	410	737	1800
3 000	58	145	284	542	1895	89	220	425	792	2353
4 000	58	146	288	556	2108	89	222	433	821	2735
5 000	59	147	290	564	2253	89	223	438	840	3009
6 000	59	147	291	569	2358	90	224	442	852	3214
7 000	59	147	292	573	2437	90	225	444	861	3373
. 8 000	59	147	293	576	2498	90	225	446	868	3500
60 000	59	149	298	595	2921	90	228	457	912	4431
70 000	59	149	298	596	2932	90	228	457	913	4455
80 000	59	149	298	596	2939	90	228	457	914	4473
90 000	59	149	298	596	2945	90	228	458	915	4488
100 000	59	149	298	596	2950	90	228	458	915	4499
200 000+	59	149	298	597	297	90	228	458	917	4551

SAMPLE SIZE to be inspected and tested

SAMPLING FOR LABORATORY TESTING

How to perform sampling on asymptomatic plants: minimum n. of leaves/cuttings collected from the consignments

N. leaves/unit?

How to process large amount of materials collected from the sample unit

How many leaves/shoot/cuttings Lcan pool in the lab?

Xf detection at plant consignments, place of production and nursery

COMPOSITE SAMPLES

Practice when a large number of samples have to be selected to satisfy sample size requirements keeping the number

of diagnostic tests

affordable

Up to 10 g (per sample or Subsample)

et al., 2014; Bergsma-

Vlami et al., 2017)

Necessity to have more data

Objective

Composite samples for *Xf*: validation of sampling and diagnostic procedures

Plant species selected: Portions (single leaves or pieces of stems)

Composite samples: by pooling at different ratio

shoots

Cherry: xylem tissue scraped

N. portions (1,2,3..).of naturally Xf-infected plant tissues (subsp pauca ST53)

N. portions of Xf-free materials

Pool of 20 gr/sample

Pool 40 gr/sample non-host plants of the ST53-strain

Results

Diagnostic sensitivity % N. infected portions/ Type of tissues **Species** Pool (20 g) N. *Xf*-free portions recovered **aPCR LAMP ELISA**

Composite sample for Xylella fastidiosa: best pools woody plant materials

plants basal part 20 g corresp. to 2 / approx. 200 Oleander Leaf petioles 100 sampled plants 100 by **CTAB**

Leaf midribs or

petioles or leaf

2cm of vegetative 2 / approx. 250 shoots

4/approx. 800-900

Olive

Polygala

20 g corresp. to 125 sampled plants

corresp. to 200-225 sampled

100

100

100

100

100

100

100^{*}

Mericon Maxwell 2-3cm of 20 g corresp. to

Lavender 2 / approx 200 vegetative shoots 90-100 sampled plants 0.1 g of xylem Up to 20 g appr. 2 / approx. 200

100 sampled plants tissue

Cherry

1) Inconsistent results without homogenization step and using 1 infected portion

2) Tests performed on Polygala leaves repeatedly failed

reaction similar to signal of negative control 3) ***4/8 replicates negative in the 1st run, when diluted 1:3 positive

Composite sample for Xylella fastidiosa: best pools herbaceous materials

Species	N. of infected portions/N. of <i>Xf</i> -	Type of tissues	Pool	Diagnostic sensitivity %			
Species	free portions	recovered	Pool	qPCR	LAMP	ELISA	
Tomato	1 stem of infected periwinkle / N. 200 stem of tomato	1,5-2 cm of stem	40 g corresp. 200 sampled plants	100	86	57	
Cabbage	1 stem of infected periwinkle / N. 200 stem of cabbage	1,5-2 cm of stem	Up to 40 g appr. 200 sampled plants	100	37.5	37.5	

- 1) Inconsistent results without homogenization step
- 2) qPCR generated 100% of diagnostic sensitivity independently by the extraction methods used
- 3) both LAMP and ELISA tests produced lower values of diagnostic sensitivity which was drastically low (37.5) for cabbage composite samples

Heat anadica		Range of OD		
Host species	CTAB MERICON		MAXWELL	(405nm) 120 (min-max)
Olive	(26.20 - 31.04)	(30.10 - 31.10)	(29.40 - 31.18)	(0.212-0.394)
Oleander	(24.03 - 28.38)	(26.21 - 27.71)	(24.38 - 26.09)	(0.493-1.248)
Polygala	(25.55 - 27.03)	(27.81 - 30.17)	(28.51 - 29.03)	(0.256-0.913)
Lavender	(32.04 - 32.56)	(29.96 - 30.14)	(28.40 - 30.89)	(0.307-1.004)
Cherry	(28.17 - 30.84)	(31.03 - 32.94)	(31.11 - 33.08)	-
Herbaceous host (Tomato)	(27.43 - 28.42)	(26.66 - 30.23)	(28.85 - 30.02)	(0.174-0.308)
Herbaceous host	(26.25 - 31.69)	(28.40 - 31.41)	(27.13 - 30.02)	(0.217-0.590)

Range of Cq

(Cabbage) Cq values in an optimal range

(1) for ELISA test

OD values in an optimal range low for olive and herbaceous hosts even if considered positive in accordance to PM 7/101

ELISA

 higher for lavender CTAB extracts and cherry Mericon and Maxwell extracts negative control not produced any amplification curve (N/A)

Testing composite samples – small amount

USING CONVENTIONAL EXTRACTION METHODS AND PROTOCOLS, EPPO 7/24 (4)

At least 6 independent replicates

Olive

Xf infected leaves

healthy leaves

We increased the number of infected leaves: **2-4 infected leaves** mixed with a variable n. of healthy leaves

		Composite samples		Diagnostic sensitivity				
Infected leaves		TOT. pool with healthy leaves	~gr (leaf pool)	Mericon +qPCR (Harper et al. 2010)	Lamp Enbiotech on sap	ELISA		
		10	0.2	83%	67%	67%		
2	+	20	0.5	92%	83%	83%		
	Ī	30	0.8	78%	78%	67%		
4	Ī	20	0.6	100%	100%	100%		
)	40	1.0	89%	100%	89%		

Using 4 infected leaves best values of diagnostic sensitivity Equal to pool 10 plants

Oleander

- > Poor results testing 1 infected leaf mixed with a variable n. of healthy leaves
- increased the number of **infected leaves**

		Composite samples		Diagn	ostic sensitivity	
Infected leaves		TOT. pool with healthy leaves	~gr (leaf pool)	Mericon +qPCR (Harper et al. 2010)	Lamp Enbiotech on sap	ELISA
2	+	16	1.7	100%	100%	89%
3		24	2.2	89%	100%	89%

Equal to pool 8 plants
Increasing the number of leaves, inhibitors could affect the assays, mainly qPCR

Polygala myrtifolia

> increased the number of infected leaves

		Composite samples		Diagnostic sensitivity			
Infected leaves		TOT. pool with healthy leaves	~gr (leaf pool)	Mericon +qPCR (Harper et al. 2010)	Lamp Enbiotech on sap	ELISA	
4	+	32	0.5	83%	83%	83%	
6)	48	1.0	100%	100%	100%	

Using 6 infected leaves best values of diagnostic sensitivity

Equal to pool 8 plants

Cherry dormant material

parts of infected scraped xylem

parts of healthy scraped xylem

		Composite samples		Diagn	ostic sensitivity	
parts of infected xylem		parts of healthy xylem	~gr (xylem pool)	Mericon +qPCR (Harper et al. 2010)	Lamp Enbiotech on sap	ELISA
2	+	8	1.0	100%	83%	100%
4		16	2.0	100%	83%	100%

Equal to pool 5 plants

Increasing the amount of xylem, inhibitors could further affect LAMP assay

STANDARD DIAGNOSTIC PROCEDURES – SMALL TISSUE AMOUNT

Host specie	Minimum n. of leaves /xylem parts to be collected	N. Plants that can be pooled	maximum n. of units
Olive	4	10	40
Oleander	3	8	24
Polygala myrtifolia	6	8	48
Cherry	4	5	20

Conclusions

- O1 Sensitive and reliable to correctly detect *Xf*
- Homogenization is a crucial step to successfully assess the presence of the bacterium
- Guidance for sampling at consignments/ place of prod./ mvmt of "specified plants" produced in nurseries in "demarcated areas", it is included in EPPO PM7/24 (4), 2019.

04

Guidelines:

- Type of tissue to be processed
- Min n. of plant portions collected from the single unit of the lot
- Max n. of units pooled and processed (up to ~100/200 plants) according to the different host species
- App. weight of lab composite samples
- Highest-performance tests according to host species

Future activities:-Produce more data on composite samples for DORMANT MATERIAL

- Organize interlaboratory validation at EU level

Thank you.....

Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti - Di.S.S.P.A.

Vito Nicola Savino

Vito Elicio Lilia Formica

EL Hatib Oumaima