

Mark-recapture experiments to estimate the dispersal capacity of *Philaenus spumarius*

<u>Simonetto A.</u>, Plazio E., Dongiovanni C., Cavalieri V., Bodino N., Saladini M., Galetto L., Saponari M., Gilioli G., Bosco D.

anna.simonetto@unibs.it

Agrofood Lab – University of Brescia

Spread of *P. spumarius*

- Only the <u>adults individuals are able to disperse</u>
- Little previous knowledge on capability of dispersal of P. spumarius
 - Weaver and King 1954
 - P. spumarius can travel for more than 30 m in a single flight.
 - Observation of marked specimens revealed around 90 m in 24 h
 - Adults usually flight within 60 cm from ground but can as high as 6 m
 - Lago 2019
 - Flight mill experiment: distance travelled (in a single flight) at least 1.99 km in 1h40 min

Approaches to the analysis of dispersal behaviour

- From the trajectories of particular dispersers (<u>Lagrangian approach</u>)
 - Dispersal end points are not confined to the sampling sites
 - Possibility of correlating disperser traits with dispersal capacities
 - Number of dispersal units sampled is limited because tagging and tracking individual dispersers is costly
- From the amount and/or diversity of dispersers at particular sampling points (<u>Eulerian approach</u>)
 - Dispersal end points are confined to the sampling sites
 - Less expensive
 - Not time limit due to high costly tracking

[Bullock et al., 2006]

An experiment on the dispersal capacity of P. spumarius

- Objective of the experiment:
 - Assessing the dispersal capacity of *P. spumarius* in two different landscapes
 - a) Not managed meadow area
 - b) Managed olive orchard

Piemonte region

Apulia region

Mark-Release-Recapture experiment: protocol

Mark

P. spumarius placed in a cage and treated with an aqueous solution of 70% albumin,
 vaporized for 2 consecutive days directly on the insects and the host plants

- Marked individuals were released at a <u>single point in the center</u> of the study area
- Placed on the ground/branches, inside an open container along the entire perimeter, so as to avoid a possible "escape effect" with consequent excessive initial displacement due to the "escape from disturbance", or a possible induced directional displacement [Blackmer et al., 2006]

Recapture

- Samplings were carried out using a net (allows to keep the insect in conditions suitable for the detection of albumin by means of ELISA analysis)
- Samples stored at -80° C, to be subjected to ELISA analysis later

Mark-Release-Recapture experiment: sampling scheme

Date	Times of recaptures	Temporal range of recaptures (days from the release)
2016, September	4	[2-15]
2017, June	6	[3-17]
2017, September	6	[2-14]

Date	Times of recaptures	Temporal range of recaptures (days from the release)		
2016, July	4	[7-17]		
2017, May	6	[2-17]		
2017, July	6	[3-17]		
2017, October	6	[2-14]		

Spread modelling

Dispersal distance: the Euclidian distance between the 'starting' and 'ending' points of a dispersal period

Travelled distance: the actual distance traveled to arrive from the 'starting' to the 'ending' points in a dispersal period

Dispersal kernel: The statistical distribution of dispersal distance in a population

Dispersal kernel

- Population-level descriptor of the movement in space
 - In a vector-transmitted disease it allows to study the spread of a the disease through the spread of the vector
 - In epidemiological modelling it allows to describe the spread of he disease
- The basic dispersal kernel is defined as encompassing only the movement and survival of the individuals during dispersal period
 - More complex models can include assumptions related to movement and species biology
- Several types of dispersal kernel [Nathan et al. 2012]
 - E.g. tails (thin/fat), long-distance dispersal

Estimation of dispersal rate

- We adopted the Brownian motion as the descriptor of the movement of P. spumarium
- The dispersal kernel representing the probability to find an individual at the radial distance r from the starting (release) point at time t

$$k_D(r,t) = \frac{1}{2Dt} \exp\left[-\frac{r^2}{4Dt}\right]$$

- Median distance at time t (dark green)
- Radius that encompass 98% of dispersing vectors at time t (light green)

Starting point

Estimation of dispersal rate: Naïve Methods

- Applied by Tufto et al. (2012)
- Based on the simplified estimation approach of Turchin (1998)
 - Estimation of $\widehat{D}(t)$ for each sampling time point (t)
 - MSD(t): Mean Square Displacement at time point (t)
 - Overall mean of $\widehat{D}(t)$

Estimation of dispersal rate: Optimization Methodology

Unbounded

- Minimization of the difference between the theoretical dispersal kernel and the empirical function
- Fitting procedure based on the relation $MSD_t = E[r_t^2] = 4Dt$

Bounded

- The recaptures are 'bounded' (maximum distance of sampling points, L)
 - Probability that an individual is at radial distance r at time t, given that the individual is within [0, L] distance from the starting point

$$p(r, t|0 \le r \le L)$$

Conclusion

			Intermediate-aggregation				
			Meadow		Olive orchard		
	Day	Radius (r)	2016/09 2017/06	2017/09	2016/07 2017/06	2017/ 07-10	
Naïve Methods	1	98%	41	103	33	55	
Unbounded	1	98%	36	67	28	48	
Bounded optimization	1	98%	36	139	29	52	
n		28	16	21	15		

- Different behavior between 'Meadow' and 'olive orchard'
 - Lower spread in the olive orchard
- Naïve Methods overestimates the spread rate
- Due to bounded correction, estimates increases less than 10% of the unbounded value.
 - Only in one case there is a huge effect of applying the bounded correction (from 67 m to 139 m)
 - Impact of bounded corrections depend on distribution of dispersal distances
 - High when the number of recaptured individuals near L (maximum distance) is high
 - Low when most of individuals are found close to the starting point and far from L

Reference

- Blackmer J.L., Hagler J.R., Simmons G.S., Henneberry T.J. (2006) Dispersal of Homalodisca vitripennis (Homoptera: Cicacellidae) from a Point Release Site in Citrus, Environmental Entomology, 35(6), 1617–1625
- Bullock, J.M., Shea, K., Skarpaas, O. (2006). 'Measuring plant dispersal: an introduction to fi eld methods and experimental design', Plant Ecology 186: 217–34.
- Cornara, D., Cavalieri, V., Dongiovanni, C., Altamura, G., Palmisano, F., Bosco, D., Porcelli, F., Almeida, R. P. P., Saponari, M. (2017). Transmission of Xylella fastidiosa by naturally infected Philaenus spumarius (Hemiptera, Aphrophoridae) to different host plants. J. Appl. Entomol. 141:80-87.
- Di Serio, F., Bodino, N., Cavalieri, V., Demichelis, S., Di Carolo, M., Dongiovanni, C., ... & Plazio, E. (2019). Collection of Data and Information on Biology and Control of Vectors of Xylella fastidiosa. EFSA Supporting Publications, 16(5).
- Fierro, A., Liccardo, A., & Porcelli, F. (2019). A lattice model to manage the vector and the infection of the Xylella fastidiosa on olive trees. Scientific Reports, 9(1), 8723.
- Frazier, N.W., Freitag J.H. (1946). Ten additional leafhopper vectors of the virus causing Pierce's disease of grape. Phytopathology 36: 634-637.
- Jeger, M., Bragard, C. (2018). The epidemiology of Xylella fastidiosa; A perspective on current knowledge and framework to investigate plant host-vector-pathogen interactions. Phytopathology, 109(2), 200-209.
- Nathan R., Getz W.M., Revilla E. et al. (2008). 'A movement ecology paradigm for unifying organismal movement research', Proceedings of the National Academy of Sciences of the USA 105: 19052–9
- Nathan, R., Klein, E. K., Robledo-Arnuncio, J. J., & Revilla, E. (2012). Dispersal kernels. In Dispersal ecology and evolution (pp. 187-210). Oxford: Oxford University Press.
- Picciotti, U., Sefa, V., Russo, V., Gammino, R. P., Duggan, F., Porcelli, F., ... & Diana, F. (2018). Monitoraggio e controllo dei vettori di Xylella. Olivo & olio, 21(4), 41-43.
- Redak R.A., Purcell A.H., Lopes J.R.S., Blua M.J., Mizell R.F. III, Andersen P.C. (2004). The biology of xylem ßuid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annu. Rev. Entomol. 49: 243-270.
- White, S. M., Bullock, J. M., Hooftman, D. A., & Chapman, D. S. (2017). Modelling the spread and control of Xylella fastidiosa in the early stages of invasion in Apulia, Italy. Biological Invasions, 19(6), 1825-1837.

Thanks for your attention