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Spread of P. spumarius

▪ Only the adults individuals are able to disperse

▪ Little previous knowledge on capability of dispersal of P. spumarius

▪ Weaver and King 1954

▪ P. spumarius can travel for more than 30 m in a single flight.

▪ Observation of marked specimens revealed around 90 m in 24 h

▪ Adults usually flight within 60 cm from ground but can as high as 6 m

▪ Lago 2019

▪ Flight mill experiment: distance travelled (in a single flight) at least 1.99 km in 1h40 min
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Approaches to the analysis of dispersal behaviour

▪ From the trajectories of particular dispersers (Lagrangian approach)

▪ Dispersal end points are not confined to the sampling sites

▪ Possibility of correlating disperser traits with dispersal capacities

▪ Number of dispersal units sampled is limited because tagging and tracking individual
dispersers is costly

▪ From the amount and/or diversity of dispersers at particular sampling points (Eulerian approach)

▪ Dispersal end points are confined to the sampling sites

▪ Less expensive

▪ Not time limit due to high costly tracking

[Bullock et al., 2006] 
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An experiment on the dispersal capacity of P. spumarius

▪ Objective of the experiment:

▪ Assessing the dispersal capacity of P. spumarius in two different landscapes

a) Not managed meadow area

b) Managed olive orchard

Simonetto
29th October 2019

Piemonte region Apulia region 



▪ Mark

▪ P. spumarius placed in a cage and treated with an aqueous solution of 70% albumin,
vaporized for 2 consecutive days directly on the insects and the host plants

▪ Release

▪ Marked individuals were released at a single point in the center of the study area

▪ Placed on the ground/branches, inside an open container along the entire
perimeter, so as to avoid a possible "escape effect" with consequent excessive
initial displacement due to the "escape from disturbance", or a possible induced
directional displacement [Blackmer et al., 2006]

▪ Recapture

▪ Samplings were carried out using a net (allows to keep the insect in conditions
suitable for the detection of albumin by means of ELISA analysis)

▪ Samples stored at -80° C, to be subjected to ELISA analysis later
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Mark-Release-Recapture experiment: 
protocol



Mark-Release-Recapture experiment: 
sampling scheme

Date

Times of 

recaptures

Temporal range of 

recaptures 

(days from the release)

2016, September 4 [2-15]

2017, June 6 [3-17]

2017, September 6 [2-14]

Date

Times of 

recaptures

Temporal range of 

recaptures 

(days from the release)

2016, July 4 [7-17]

2017, May 6 [2-17]

2017, July 6 [3-17]

2017, October 6 [2-14]
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Dispersal distance: the Euclidian distance between the
‘starting’ and ‘ending’ points of a
dispersal period

Travelled distance: the actual distance traveled to arrive
from the ‘starting’ to the ‘ending’
points in a dispersal period

≠

Dispersal kernel: The statistical distribution of dispersal
distance in a population

Resting site

Spread modelling

Starting point

Ending point
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▪ Population-level descriptor of the movement in space

▪ In a vector-transmitted disease it allows to study the spread of a
the disease through the spread of the vector

▪ In epidemiological modelling it allows to describe the spread of he
disease

▪ The basic dispersal kernel is defined as encompassing only the
movement and survival of the individuals during dispersal period

▪ More complex models can include assumptions related to
movement and species biology

▪ Several types of dispersal kernel [Nathan et al. 2012]

▪ E.g. tails (thin/fat), long-distance dispersal
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Estimation of dispersal rate
▪ We adopted the Brownian motion as the descriptor of the movement of P.

spumarium

▪ The dispersal kernel representing the probability to find an individual at
the radial distance 𝑟 from the starting (release) point at time t

𝑘𝐷 𝑟, 𝑡 =
1

2𝐷𝑡
exp −

𝑟2

4𝐷𝑡

▪ 𝐷 is the diffusion rate

▪ Median distance at time 𝑡 (dark green)

▪ Radius that encompass 98% of dispersing vectors at time 𝑡 (light green)
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▪ Applied by Tufto et al. (2012)

▪ Based on the simplified estimation approach of Turchin (1998)

▪ Estimation of ෡𝐷 𝑡 for each sampling time point 𝑡

▪ 𝑀𝑆𝐷 𝑡 : Mean Square Displacement at time point 𝑡

▪ Overall mean of ෡𝐷 𝑡
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Estimation of dispersal rate: 
Naïve Methods 



Estimation of dispersal rate: 
Optimization Methodology

▪ Minimization of the difference between the theoretical dispersal kernel and the empirical function 

▪ Fitting procedure based on the relation 𝑀𝑆𝐷𝑡 = 𝐸 𝑟𝑡2 = 4𝐷𝑡

Unbounded

Bounded
▪ The recaptures are ‘bounded’ (maximum distance of sampling points, 𝐿)

▪ Probability that an individual is at radial distance 𝑟 at time 𝑡, given
that the individual is within 0, 𝐿 distance from the starting point

𝑝 𝑟, 𝑡|0 ≤ 𝑟 ≤ 𝐿
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L = max distance



Conclusion
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▪ Different behavior between ‘Meadow’ and ‘olive orchard’

▪ Lower spread in the olive orchard

▪ Naïve Methods overestimates the spread rate

▪ Due to bounded correction, estimates increases less than 
10% of the unbounded value.

▪ Only in one case there is a huge effect of applying the 
bounded correction (from 67 m to 139 m)

▪ Impact of bounded corrections depend on distribution 
of dispersal distances

▪ High when the number of recaptured individuals 
near L (maximum distance) is high

▪ Low when most of individuals are found close to 
the starting point and far from L

Intermediate-aggregation

Meadow Olive orchard

Day Radius (r)
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Thanks for your attention


