

GĘS

CENTER

NC STATE

Fred Gould North Carolina State University

Hopes and Fears
Types of gene drive systems
Mechanisms behind unrestricted drives
Mechanisms behind spatially restricted drives
Problem formulation

Hopes and Fears
Types of gene drive systems
Mechanisms behind unrestricted drives
Mechanisms behind spatially restricted drives
Problem formulation

А Multitude of Hopes

Aiding Immunizing Threatened Animal Reservoirs Species of Disease Safely Controlling Gene Drives and Transgenes Human Health Environment Controlling Controlling **RNA-Guided** Vector-Borne Invasive Gene Drives Disease Species New Tools for Sustainable Nontoxic Ecology Pesticides & Pest Herbicides Management Agriculture Esvelt et al. 2014 and the set of the set

Malaria

435,000 Deaths 219,000,000 Cases \$ 3.1 Billion Cost (US)

Malaria

435,000 Deaths 219,000,000 Cases \$ 3.1 Billion Cost (US)

A Vector Control Research Alliance

The Fears

A Vector Control Research Alliance

Ecosystem disruption
Resurgence
Others

Eradicate Invasives

Of bird, amphibian, mammal, and reptile extinctions

Eradicate Invasives

Of bird, amphibian, mammal, and reptile extinctions

Global House Mouse Distribution

1) Hopes and Fears

2) Types of gene drive systems

3) Mechanisms behind unrestricted drives
4) Mechanisms behind spatially restricted drives
5) Problem formulation

Impact on Population

Suppression Replacement

Spread Characteristic

Impact on Population

Suppression Replacement

Spread Characteristic

Threshold Restricted Gene Drive

Threshold Restricted Gene Drive

Temporally Restricted Gene Drive

Threshold Restricted Gene Drive

Temporally Restricted Gene Drive

Impact on Population

Suppression Replacement

Spread Characteristic

Replacement

Number of Individuals

Number of Individuals

Time

The Mechanism Behind the Magic

The Mechanism Behind the Magic

The Mechanism Behind the Magic

Spatially Unrestricted Gene Drives

CRISPR for Crop Breeding

CRISPR for Gene Drive

Non-Homologous End-Joining (NHEJ)

Homology-Directed Repair (HDR)
Homology-Directed Repair (HDR)

Chromosome

A DE ALIA Non-Homologous End-Joining (NHEJ)

Chromosome

Homology-Directed Repair (HDR)

Slide series adapted from Gantz and Bier 2015

Chromosome segment with target sequence

Chromosome segment with target sequence

Plasmid with

desired gene

Chromosome segment with target sequence

Plasmid with

desired gene

CRISPR for Gene Drive

D

second allele

D second allele

Homologue #2

- gRNA Cas9

March 2015

Sciencexpress

The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations

Valentino M. Gantz* and Ethan Bier*

Wild Type or Heterozygote

Homozygous mutant

Super-Mendelian Inheritance

mpact on Population

Suppression Replacement

Spread Characteristic

Impact on Population

Suppression Replacement

Spread Characteristic

Locally Fixed Alleles: A method to localize gene drive to island populations

Jaye Sudweeks, Brandon Hollingsworth, Dimitri V. Blondel, Karl J. Campbell, Sumit Dhole, John D. Eisemann, Owain Edwards, John Godwin, Gregg R. Howald, Kevin Oh, Antoinette J. Piaggio, Thomas A. A. Prowse, Joshua V. Ross, J. Royden Saah, Aaron B. Shiels, Paul Thomas, David W. Threadgill, Michael R. Vella, Fred Gould, Alun L. Lloyd

doi: https://doi.org/10.1101/509364

Island

TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA

TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA

Mainland

TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA

TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCTAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCTAGCCTGTGGAAAGCTA

TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCCAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA

Island

Island

Mainland

TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA

TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCTAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCTAGCCTGTGGAAAGCTA

TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA TTGCCACACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA TTGCCACCACAAGTGAGAGGACTTGAGTTCAGATCCCCCCAAGCCTGTGGAAAGCTA

Threshold Restricted Gene Drive

Threshold Restricted Gene Drive

Underdominance

Aa

aa

Engineered Underdominance – No cost

Large numbers of transgenic genotypes released

A transgenic Individual is likely to mate with another transgenic individual

A wildtype individual is likely to mate with a transgenic individual

Engineered Underdominance – No cost

Hopes and Fears 2) Types of gene drive systems Mechanisms behind unrestricted drives (CRISPR) 3 A) Current state of the art **B)** Models of spread 4) Mechanisms behind spatially restricted drives (Fixed alleles/Underdominance) A) Current state of the art B) Models of spread **Problem formulation**

Problem Formulation

1) Formally devise plausible pathways that describe how the deployment of gene drive modified insects could be harmful

Problem Formulation

1) Formally devise plausible pathways that describe how the deployment of gene drive modified insects could be harmful

2) Formulate risk hypotheses about the likelihood and severity of such events

Problem Formulation

1) Formally devise plausible pathways that describe how the deployment of gene drive modified insects could be harmful

2) Formulate risk hypotheses about the likelihood and severity of such events

3) Identify the information that will be useful to test these risk hypotheses.

When "devising plausible pathways" keep in mind that....

Not All Gene Drives Are Created Equal