EC DG JRC activities

Eddo Hoekstra

敦

3º

EFSA-FIP, Parma, 10th of July 2018

The European Commission's science and knowledge service

de

Joint Research Centre

Content

- FCM group
- NIAS
- Mineral oil
- Revision kitchenware guideline
- Ceramics, vitreous materials
- Recycling of plastic
- PT Temperature control during migration testing
- PT Oligomers

DISCLAIMER

This work does not represent the position of the European Commission

FCM topics

Migration test methods Ceramics, vitreous materials Revision kitchenware guideline Migration modelling

Analytical methods Collection Calibrants Multi-analyte ((N)IAS) Performance guideline Proficiency testing Authorisation FCM Laboratories FCM Ispra FCM org. Geel FCM inorg Geel

Quality management ISO 17025, 17043

Mineral oil

CoE EFSA

DG SANTE

Standardisation

ISO, CEN

Eur Co

Recycling of plastics

European Commission

NIAS – EuPC/JRC project

Identify IAS and NIASs migrating from common plastic FCM in the EU

- ✓ Use worst case migration test conditions
- ✓ Develop in-house libraries both for GC-MS and LC-MS
- Highlight problems during routine testing
- > Assign scores for NIAS to establish a potential hierarchy of concern
- Develop proposals to address any substances of potential concern

Samples

- 70 representative FCM from EuPC
 - > 63 different plastic FCM
 - food packing films
 - (non-)printed
 - trays
 - ✓ bottles and preforms
 - caps
 - cutlery
 - machine parts that contacts with food
- 5 resins
 - > PP, PS, PET, and other specific polymer)
- > 29 monolayers, 35 multi-layers (2-10)

Selection migration test conditions

Worst case foreseeable conditions specified by producer Simplifications:

- Food simulant D2 replaced by isooctane
- In case of samples with more than two food simulants
 - ✓ maximum two food simulants for each sample
 - ✓ preference for D2
 - ✓ one aqueous food simulant with higher organic phase

food simulant A: 20 °C/10 d (5); 40 °C/10 d (7); 60 °C/10 d (22) food simulant C: 20 °C/10 d (1); 40 °C/10 d (4); 100 °C/3 d (1) food simulant D1: 20 °C/10 d (1); 40 °C/10 d (7); 60 °C/10 d (18) Isooctane: 20 °C/10 d (9); 40 °C/10 d (3); 40 °C/2 d (16); 60 °C/10 d (13) food simulant E: 20 °C/10 d (1); 60 °C/10 d (4); 100 °C/1 h (1); 121 °C/2 d (1)

Sample preparation

Petri dishes for rigid multilayer sample (0.14 dm²/1 g; 2 samples)

(1 dm²/25-50 ml; 25 samples) Immersion for rigid monolayer (1 dm²/100 ml; 21 samples), caps, machine parts, cutlery

Pouch for flexible mono/multilayer (1 dm²/25-50 ml; 25 samples) r

Immersion for resins (25 pieces/20 ml; 7 samples)

Filling for trays, bottles (real S/V; 11 samples)

Cell for rigid multilayer (0.5 dm²/60 ml; 4 samples)

Problems during migration test

- Delamination with isooctane (no problem with A and D1) (4x)
 - Test with D2
- > Evaporation of ethanol and/or isooctane through multilayer (5x)
 - ✓ Monolayers: immersion
 - ✓ Multilayers: food and D2 resp.
- Shrinkage of multilayer in D1 and isooctane (1x)
 - ✓ Test with food
- Precipitation/suspension after 24 h in extract C (1x), D1 (2x) and isooctane (19x)
 - Filtration of solution
 - ✓ Test with D2
- Boiling with multi-layers
 - ✓ Non-pouchable


OR reconsider time-Temperature

Migration solution preparation for analysis

GC-MS(EI):

HP-5: 30 m x 0.25 mm, 0.25 µm film

1 μl splittless injection (300°C, 8 min) Oven: 40°C (8 min) - 10°C/min - 320°C (14 min) m/z: 40-1000 amu

UPLC-MS(QTOF):

Zorbax, Extend-C18 (50 mm x 2.1 mm, 1.8 μm) **Dual ESI+**

Methanol (0.1% Formic acid) – water (0.1% Formic acid)

GC-MS and LC-MS results

Substance	CAS No	FCM No	SML	id	N samples (GC/LC)
2,4-di-tert-butylphenol	96-76-4		SIVIE	y	23/13
tris(2,4-di-tert-butylphenyl) phosphate	95906-11-9			y	23/10
erucamide	112-84-5	271		y	22/22
tris(2,4-di-tert-butylphenyl)phosphite (irgafos 168)	31570-04-4	671		У	21/0
(11Z)-11-icosenamide (trans-13-docosenamide)	10436-08-5	589		High 68	10/20
2,6-di-tert-butyl-4-cresol	128-37-0	315	3	У	16/0
(15Z)-15-tetracosenamide					x/16
2,2'-(Tridecylimino)diethanol	68155-05-5				0/14
C22H38O					?/13
m/z=934, 939					?/13
icosanamide	51360-63-5				0/12
diethyl phthalate	84-66-2			у	11/0
oleamide	301-02-0	335			0/11
linoleamide	3999-01-7				0/11
docosanamide (behenamide)	3061-75-4	458			0/11
caprolactam	105-60-2	212	15	у	10/13
hexadecanoic acid, bis(2-ethylhexyl) ester (DEHA)	103-23-1	207	18	У	10/6
palmitamide	629-54-9				0/10

NIAS: Criteria for scoring

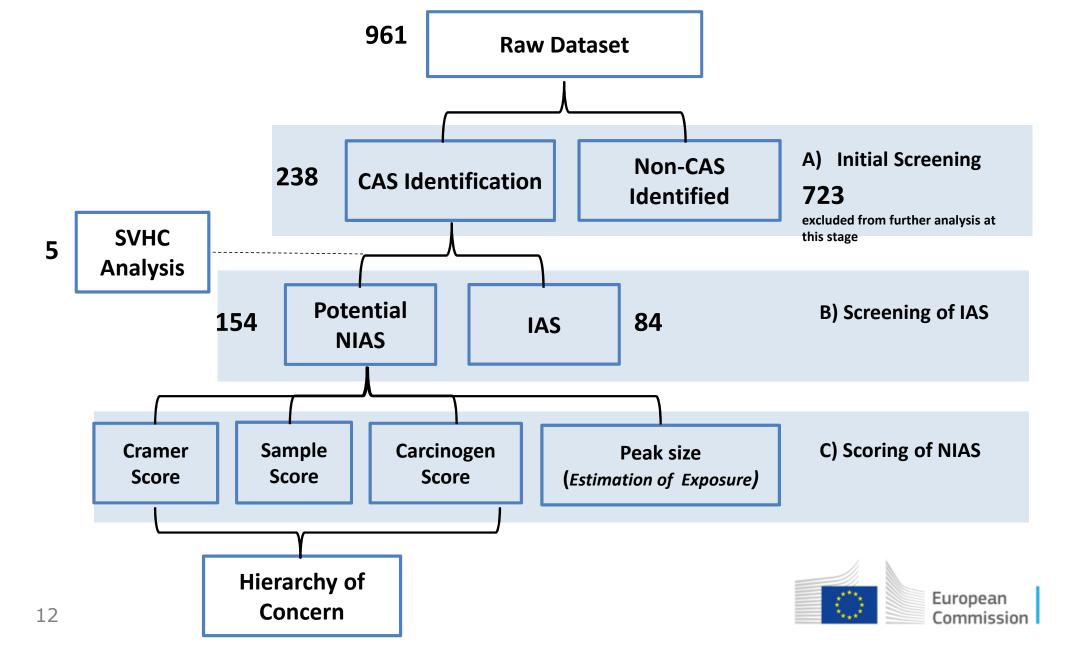
Cramer score

- Identification of the Cramer Class using in-silico tools (Toxtree, OECD Toolbox)
 - Class I: score-5; Class II: score 0; Class III: score +5

Sample score

- Occurrence of a NIAS in analysed samples
 - \checkmark Score: N of samples in which the NIAS has been identified

Carcinogen score


- Segregate potential CMR and assign maximum concern score
 - CMR: score 10; Non-CMR: score 0

Peak size

No quantitative analysis

• Only as Small, Medium, High (not used as scoring system)

Total score

Score	<0	0-5	6-10	11-15	16-20	>20	TOTAL
Ν	28	9	88	12	15	1	154

Frequency of occurrence

Frequency	1	2	3-4	5-6	7	>7	TOTAL
Ν	88	20	25	13	2	6	154

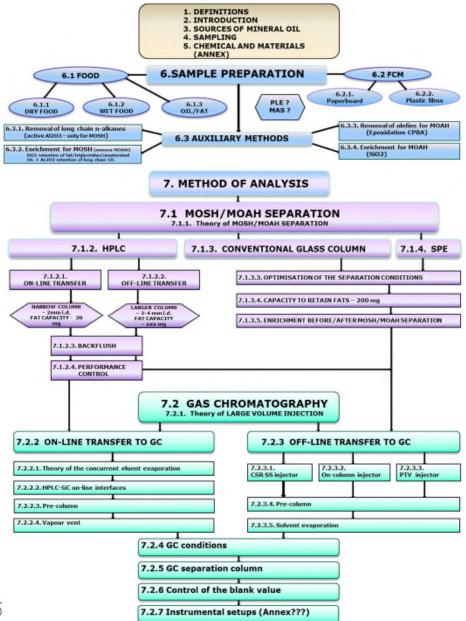
Next - RA

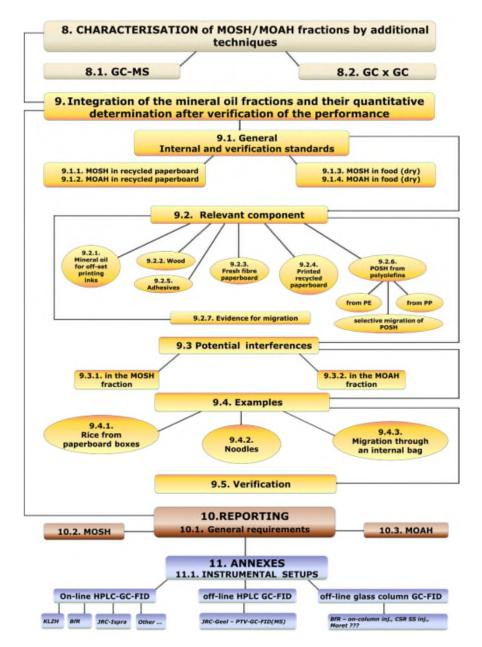
- Risk Assessment based on Matrix Exposure tool
- priority to substances exceeding a score threshold
- Pilot Risk Assessment Scheme

Next - analysis

- Quantification
- Development of multi-analyte methods
- In-house library-building

MOH Guidelines – Recommendation (EU) 2017/84


- Performance criteria for analytical method
 - Unit, significant figures, rounding, measurement uncertainty
 - LOQ
 - ✓ Recovery
 - ✓ Within laboratory precision
 - ✓ Ability to determine up to C_{50} (recovery of ≥ 80 %)
- Sample preparation methods and deviations to prescribed.
- Auxiliary methods used and deviations to prescribed
- Identified sources and description of strategy identifying
 - analysis of the food at different stages of the supply chain + FCM
 - presence of mineral oil identifiers fraction, e.g. pristane, phytane, hopanes in MOSH, or use of recycled paper (DIPN) by GC-MS or GCxGC-FID/MS
 - Identification of PAO or POH shall be reported


File containing pictures of chromatograms – voluntary

obligatory Total M

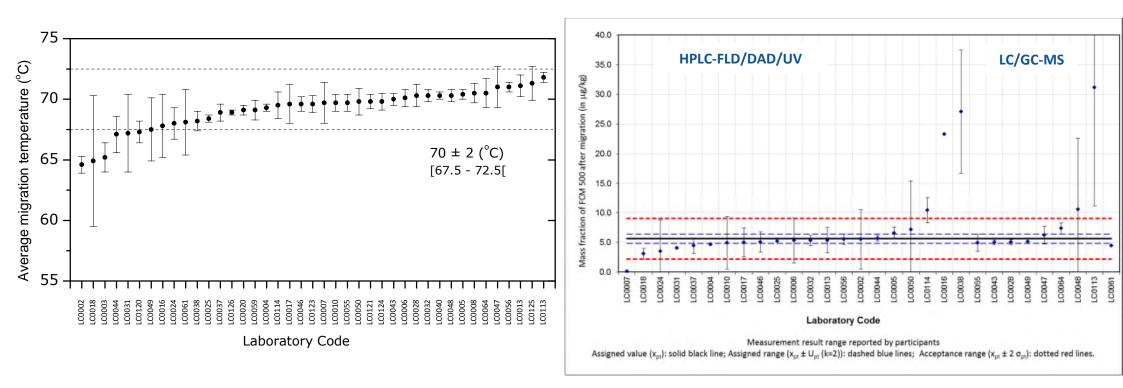
- Total MOSH
- $\mathbf{MOSH} \geq \mathbf{C10} \text{ to} \leq \mathbf{C16}$
- $\blacktriangleright MOSH > C16 to \le C20$
- $\blacktriangleright MOSH > C20 \text{ to} \leq C25$
- ➤ MOSH > C25 to ≤ C35
- $\blacktriangleright MOSH > C35 to \le C40$
- $\blacktriangleright MOSH > C40 \text{ to} \leq C50$
- Total MOAH
- → MOAH ≥ C10 to ≤ C16
- $\blacktriangleright MOAH \ge C16 \text{ to} \le C25$
- $\blacktriangleright MOAH > C25 to \le C35$
- MOAH > C35 to ≤ C50Voluntary
- MOSH Hump n (n=...)
- > MOAH Hump n (n=...)

Revision kitchenware guideline

- All materials covered
- Harmonisation of test conditions
 - Plastic vs ceramic concept
- First finalise plastic
 - \checkmark Surface-to-volume = 6 dm²/kg food vs. envelop volume method
 - ✓ New proposed test conditions vs. guideline China-Hong Kong imports
 - ✓ Time factor 4 for replacement T>100°C to T=100°C or reflux
 - Other t-T conditions?
 - Product testing vs testing individual parts
- Second phase discussion per material

Ceramics, vitreous materials

Continuation work on development of test conditions for cookware and bakeware



Recycling of plastic

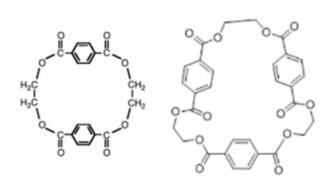
- Development of a monitoring approach for input and output quality of recycling process
 - Suitable for use by business operators,
- Set up a reporting system that can do statistical analysis on the data.
 - Identification of recurrent substances
 - Identification of possible sources of groups of contaminants of concern
 - Identification of substances that can be used as a signal that recycled materials originate from a non-food source, such as substances that are representative of detergents, or mineral oils
- Inventory of present monitoring activities



Proficiency test temperature control and migration

Principle component analysis

- **1.** Preheating the FCM before migration shall be avoided
- 2. Use of calibrated thermometers or data loggers is compulsory
- 3. Food simulant losses minimised by using proper covering/seal of the cup
- 4. Filling time should be done within half a minute 20



Proficiency test oligomers

- Cyclic potential more toxic
- Substances
 - ethylene terephthalate cyclic dimer (PET cyclic dimer)
 - ethylene terephthalate cyclic trimer (PET cyclic trimer)
 - butylene terephthalate cyclic dimer (PBT cyclic dimer)
 - butylene terephthalate cyclic trimer (PBT cyclic trimer)

Matrix

- Spiked food simulant D1
- Spiked food simulant D1 migration solution of PET
- Method given but voluntary: HPLC-UV

FCM no 885

Stay in touch

EU Science Hub: ec.europa.eu/jrc

Twitter: @EU_ScienceHub

Facebook: EU Science Hub - Joint Research Centre

LinkedIn: Joint Research Centre

YouTube: **EU Science Hub**

