

Jesus Alvarez-Piñera

Head of Surveillance, Methods and Laboratory Policy
67th Advisory Forum meeting - 6 February, 2018 Utrecht

In this presentation...

- Why Surveillance is an FSA priority? Reasoning behind the approach to a new food surveillance system
- Drivers for change
- Level of ambition
- High level plan
 - Prototypes Proof of Concept (PoC)
 - Olive oil and vibrio POCs
 - Internal & External networks
- Next steps

Definition of Surveillance

Surveillance can be defined as: "the ongoing systematic collection, collation, analysis and interpretation of data, followed by the dissemination of information to all those involved so that directed actions may be taken" (WHO).

The **FSA's Food surveillance** (in this context 'food' includes drink and animal feed) is about building a picture of the food system, its risks and vulnerabilities, so that FSA, and others, can manage consumer risks.

Data pyramid

FUTURE DECISIONS change, WHAT ACTION? movement reveals direction given purpose, becomes WHAT IS BEST? WISDOM understanding, integrated, reveals principles actionable given insight, becomes **PAST** KNOWLEDGE contextual, synthesized, WHY? reveals given meaning, patterns becomes INFORMATION WHAT? reveals given context, relationships becomes DATA signals, know-nothing

Surveillance vision built on data

To protect the consumer, and ensure that food is safe and authentic, we need to analyse data to understand where issues may arise **before** they are issues

Expectations Goal: Design a flexible, evolving system to account for possible risks and challenges

What are the drivers for change?

- Current program has room for improvement "Scraping tablecloths in Leeds" does not protect the public against evolving and often fast moving, global threats
- 2. **Budget pressures are high** – £2m spent on sampling could be used more intelligently
- Regulate the Future, not the Past be prepared to manage future 3. problems, not focused only on regulating past / known issues
- Others may do it better Industry / academic and technology progress 4. affords us the opportunity to use this and to support Surveillance

The Vision: where do we want to be?

By March 2019 have a Surveillance Capability (core service) that:

- Supports the wider ambition that food is safe to eat and is what it says on the tin
- Helps us to understand risks (safety / authenticity / assurance) and identify both gaps and risks that are changing or not being managed, followed by a plan of action
- <u>Drives decision making and prioritisation across all parts of the FSA</u> and beyond
- <u>Uses evidence-based analytics</u> to deliver the appropriate level of confidence / certainty to drive decision-making

Proposed High Level Operating Model

Programme Update – Prototypes

- Comotion deliverables encapsulated the Surveillance vision and Target Op Model
- Defining detailed user needs and mobilising to delivery has proven to be a challenge
- We will use the discovery phase to learn and help assess the options
- This approach also supports the Surveillance transition toward agile delivery, see Appendix 03

Prototypes

SURVEILLANCE

Think Big, Act Small, Fail Fast and Learn Rapidly

Why Prototyping?

- Prototyping approach has received wholesale agreement, spanning programme board members, surveillance delivery team, academia and external partners
- First two POCs: Olive Oil and Vibrios, both of which begin with 'Known Knowns'.

- Developing a technological solution to case studies will address a 'Known Knowns' example and could be used as a benchmark model against which futures models are assessed.
- IBM has supported the development of the first prototypes (mid-November)

The key to quickly generating insight

- For the first time, we organised a #hackathon which brought together subject matter experts & data scientists, who used open data to create actionable insights into high-risk commodities
- For seven weeks we worked with IBM on two proofs-of-concept

Olive oil adulteration

As a result of fraudulent activity, one in three bottles of olive oil in the UK are either fake or of poor quality

Vibrios in shellfish

Naturally occurring bacteria in warm coastal water can cause disease in people who eat contaminated shellfish

Week by week plan

- Business understanding
- 2. Data gathering
- 3. Hackathon preparation
- 4. Two-day Hackathon event
- 5. Continued analysis
- 6. Road-mapping and prototyping
- 7. Final playback

We created a trade dashboard...

Hackathon outputs #oliveoil

We created an interactive dashboard that uses openly available UN trade data to identify patterns and anomalies in the trade of olives and olive oil.

A user of the dashboard might note that...

- UK's biggest trade partner (EU member state) in olive oil production dropped by 75% in 2017
- despite this, exported amount of olive oil to the UK remained similar
- during that time, 3rd country exported olives to EU member state
- 3rd country olives were likely turned into EU-labelled olive oil

Hackathon outputs #vibrio

We created machine learning models that use data from the CDC and NOAA to predict vibrio infection rates with the intention to apply this to the UK

Sea surface temperatures USA

Vibrio infections over time

Prediction of vibrio infections Actual infections Predicted infections 2010 2011 2012 2013 2014

15 UK Sea Surface Temperature (SST) (Met Office, 2015)

We found that...

- in the US, number of vibrio infections correlates strongly with sea surface temperatures (SST)
- can use machine learning approaches to predict the local number of infections from SST
- using climate change models, this model may also be used to predict risk of infections in the UK
- we can identify vulnerable groups in the population and model survival rates for those who are infected.
- We can use the UN global trade to track imports of shellfish.

Trade data visualisation tool

https://foodstandards.shinyapps.io/TradeDataVis/

Internal /External Networks

Internal Network

- The second Internal Network took place on the 21st of September.
- The agenda includes an up-date on progress of the Surveillance work and a workshop to identify next prototype work
- Biggest challenge: organisational cultural change.

External network

- The first External Network meeting took place on the 6th October.
- Open and frank discussion about challenges
- Biggest challenge: sharing data/ commercially sensitive data, etc.

INDUSTRY BUY-IN!!!

••••••

Next Steps

- Continue with new POCs to keep running the high level operating model
 - Increase complexity progress from 'Known Knowns' to 'Know Unknowns' / 'Unknown Unknowns'
 - Involve other companies/ academia...
 - Present results across the FSA and externally support cultural change
 - IMPORT AND EXPORTS
 - MEAT OPERATIONS
- Start generating ideas to tackle challenges from internal & external networks
- Start thinking what a new 'platform' will look like, how & who will run it, etc.

