Combining evidence on multiple endpoints in dose-response assessments: multivariate models

> Wout Slob **RIVM** The Netherlands

We normally observe different PoDs (NOAELs or BMDLs) for different endpoints

- within the same study
- among different studies

*"The endpoint with the lowest POD is the most sensitive endpoint "* 

### First thing to keep in mind: uncertainties in the PoD itself

• NOAELs are imprecise

which could be the reason of NOAELs being different

(statistical sensitivity  $\neq$  biological sensitivity)

• BMDLs may differ due to larger uncertainty in one endpoint over another



BMD (confidence interval)

### Example 1: Subchronic study (anonymous)

### BMD CIs for all endpoints with a significant trend



Two CIs for each endpoint, relating to the exponential and Hill model

# This can be done by one automated run (PROAST)

BMR = 5% for all endpoints

The crucial question in deriving BMDs for continuous endpoints is: What value for the BMR should be used for each endpoint?

Slob (2017) presents a theory that may provide an answer:

Scale the BMR to the maximum response: log(M)

Due to the correlation between M and s, scaling to s could be used as a proxy

s = within-group SD on log-scale E2:  $y = a^{exp}(bx)$ version: 62.7 40 00 loglik -65.08 6.11 conv scaling 4 dtype selected  $\log(M) =$ as log10-M Question (hypothesis): 0 N Are endpoints equally sensitive? (when using the scaled BMR)

-1.0

-0.5

log10-s

0.0



red triangles: estimates of M and s are based on multiple studies

#### Example 1: Subchronic study (anonymous)





#### BMR = 5% for all endpoints

endpoint-specific value for BMR (scaled to within group s)



#### BMD CIs per endpoint

BMR = 5% for all endpoints



#### BMD CIs per endpoint

endpoint-specific BMR

The scaling of the BMR is based on the "incidental" s in the study itself, rather than on the average of a large number of studies.

may explain the remaining (small) differences

I recently developed a model that reflects the ES-theory by substituting the maximum response parameter by q s, leaving just one parameter for the CED for all endpoints

within-group  $s_{endp}$ background response  $a_{endp}$ q in log( $M_{endp}$ ) = q  $s_{endp}$ steepness (d) BMD dependent on endpoint dependent on endpoint q: common d: common BMD: common Model with endpoint-dependent background and s, two shape parameters (d and q), and ONE parameter for the BMD

statistical challenge:

How to establish the confidence interval for that single BMD?

 $\downarrow$ 

multivariate methods





Model with the same CED for all endpoints (with endpoint-specific CES)

This model reflects that all endpoints are equally sensitive

Hypothesis not rejected

### Correlations among endpoints (after correcting for the dose-response)

| model<br>47 |        | rhodorsi<br>I |        |        |        |        |        |        |        |        |        |        |           |          |        |        |        |
|-------------|--------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----------|----------|--------|--------|--------|
|             | alat   | album         | asat   | hb     | liver  | lympho | mch    | mchc   | mcv    | neutro | рсv    | rbc    | relaliver | reticulo | spleen | termbw | tp     |
| alat        | 1      | -0.064        | 0.631  | -0.087 | -0.185 | -0.035 | -0.102 | 0.096  | -0.113 | 0.086  | -0.16  | -0.033 | -0.049    | -0.2     | 0.057  | -0.118 | -0.161 |
| album       | -0.064 | 1             | 0.072  | -0.21  | -0.108 | -0.164 | 0.1    | -0.328 | 0.334  | 0.092  | 0.344  | -0.256 | 0.319     | 0.046    | 0.261  | 0.145  | 0.695  |
| asat        | 0.63   | 0.072         | 1      | -0.206 | -0.068 | -0.019 | -0.007 | -0.106 | 0.093  | 0.007  | -0.021 | -0.18  | -0.052    | 0.027    | -0.019 | 0.127  | -0.109 |
| hb          | -0.087 | -0.21         | -0.206 | 1      | 0.255  | 0.334  | -0.185 | 0.689  | -0.64  | -0.119 | 0.144  | 0.92   | -0.236    | -0.337   | -0.413 | -0.109 | 0.004  |
| liver       | -0.185 | -0.108        | -0.068 | 0.255  | 1      | 0.227  | -0.04  | 0.112  | -0.106 | -0.066 | 0.135  | 0.225  | 0.407     | -0.127   | -0.242 | 0.583  | 0.131  |
| lympho      | -0.035 | -0.164        | -0.019 | 0.334  | 0.227  | 1      | 0.065  | 0.126  | -0.056 | -0.688 | 0.294  | 0.232  | -0.135    | 0.068    | 0.008  | 0.362  | -0.136 |
| mch         | -0.102 | 0.1           | -0.007 | -0.185 | -0.04  | 0.065  | 1      | -0.223 | 0.611  | -0.164 | 0.101  | -0.541 | 0.043     | 0.186    | 0.195  | 0.098  | -0.165 |
| mchc        | 0.096  | -0.328        | -0.106 | 0.689  | 0.112  | 0.126  | -0.223 | 1      | -0.905 | 0.011  | -0.551 | 0.71   | -0.369    | -0.272   | -0.419 | -0.324 | -0.084 |
| mcv         | -0.113 | 0.334         | 0.093  | -0.64  | -0.106 | -0.056 | 0.611  | -0.905 | 1      | -0.093 | 0.515  | -0.81  | 0.33      | 0.301    | 0.427  | 0.343  | 0.012  |
| neutro      | 0.086  | 0.092         | 0.007  | -0.119 | -0.066 | -0.688 | -0.164 | 0.011  | -0.093 | 1      | -0.222 | -0.018 | 0.158     | -0.131   | -0.034 | -0.287 | 0.044  |
| рсv         | -0.16  | 0.344         | -0.021 | 0.144  | 0.135  | 0.294  | 0.101  | -0.551 | 0.515  | -0.222 | . 1    | 0.008  | 0.299     | 0.004    | 0.129  | 0.527  | 0.198  |
| rbc         | -0.033 | -0.256        | -0.18  | 0.922  | 0.225  | 0.232  | -0.541 | 0.708  | -0.814 | -0.018 | 0.008  | 1      | -0.246    | -0.36    | -0.438 | -0.189 | 0.043  |
| relaliver   | -0.049 | 0.319         | -0.052 | -0.236 | 0.407  | -0.135 | 0.043  | -0.369 | 0.33   | 0.158  | 0.299  | -0.246 | 1         | -0.102   | 0.196  | 0.115  | 0.191  |
| reticulo    | -0.2   | 0.046         | 0.027  | -0.337 | -0.127 | 0.068  | 0.186  | -0.272 | 0.301  | -0.131 | 0.004  | -0.36  | -0.102    | 1        | 0.204  | 0.138  | 0.022  |
| spleen      | 0.057  | 0.261         | -0.019 | -0.413 | -0.242 | 0.008  | 0.195  | -0.419 | 0.427  | -0.034 | 0.129  | -0.438 | 0.196     | 0.204    | 1      | -0.02  | 0.148  |
| termbw      | -0.118 | 0.145         | 0.127  | -0.109 | 0.583  | 0.362  | 0.098  | -0.324 | 0.343  | -0.287 | 0.527  | -0.189 | 0.115     | 0.138    | -0.02  | 1      | 0.188  |
| tp          | -0.161 | 0.695         | -0.109 | 0.004  | 0.131  | -0.136 | -0.165 | -0.084 | 0.012  | 0.044  | 0.198  | 0.043  | 0.191     | 0.022    | 0.148  | 0.188  | 1      |

## Conclusions

In various studies examined so far,

endpoints seem to be equally sensitive,

or at least close to that

If so, a single BMD (with CI) could be

derived from a study, covering all

endpoints

— multivariate methods

Suppose we have a compound with four studies, resulting in the following NOAELs:

|                       | rat | mouse |
|-----------------------|-----|-------|
| Subchr (liver effect) | 100 | 30    |
| Developm (foetal BW)  | 20  | 10    |

Conclusions :

- foetal BW more sensitive endpoint than liver effects
- mice more sensitive than rats

### Correct ?

PoDs may differ due to:

- different endpoints
- different species
- different exposure durations
- different routes

- different strains, labs, diets, study conditions, etc

- uncertainty in the POD itself

study replication

error

# Comparing endpoints in distinct studies

(Janer et al. 2007) compared NOAELs in 2-gen vs. subchronic studies

### 2-gen NOAEL vs. subchronic NOAEL



highest NOAEL vs. lowest NOAEL in replicated subchronic studies

replicated studies show a similar scatter



# Conclusion

study replication error might explain

the observed differences between 2-

gen NOAELs and subchronic NOAELs

Do endpoints in distinct studies show similar sensitivity as well?

# Impact of species

Various studies have shown that species are, on average over compounds, equally sensitive

rat vs. rabbit in developm. studies, 54 compounds (NOAELs) Janer et al. 2008: Bokkers and Slob, 2007: rats vs. mice in 958 NTP datasets (NOAELs and BMDs) (after allometric scaling) Braakhuis et al. (in prep) : rat vs. rabbit in 1273 developm. studies (LOAELs) (after allometric scaling) Bokkers (2009): mouse, rat, rabbit, monkey, dog, human (kinetics parameters) (after allometric scaling)

#### For example, developmental NOAELs in rabbit vs. rat (Janer et al. 2008):





highest NOAEL against lowest NOAEL for the same species (and co mpound)

replicated studies show a similar scatter

Using a larger database (1273 studies) Braakhuis et al. (in prep) confirmed that rat and rabbit are equally sensitive for the *individual* compounds

So, interspecies differences might not be as large as we always thought, even for individual compounds

More research on species-compound interaction is needed for other study types/effects

Before addressing the question: What to do with multiple DR datasets ?

we must know where the differences in PODs from different studies come from

endpoints? species? routes? labs? data errors? others?

#### Hypothesis 1:

All endpoints (within a study) are (more or less) equally sensitive, and can be used for estimating one single BMD (confidence interval).

#### **Hypothesis 2:**

Interspecies differences in sensitivity are minor, and studies using different (wildtype) species can be used for estimating an average BMD.

#### Hypothesis 3:

Exposure duration has an impact on the BMD, but the impact is more or less the same for all chemicals. So, the ratio of BMDs for two exposure durations is a constant.

and, similarly, other hypotheses may be investigated

If these hypotheses are (approximately) true, we can handle multiple studies by simply taking the (geometric) mean of the study BMDs, and calculate a confidence interval for that mean

(taking BMD CIs into account by taking weighted mean)

(BMDs are corrected by a constant for exposure duration)

By selecting the lower bound of that confidence interval, more studies is "rewarded" by a higher value for the lower confidence bound

### Simple numerical example

Four studies, with PODs: 20, 50, 200, 500 mg/kg

geometric mean: 100 mg/kg lower confidence bound (95% confidence) : (19



POD for this compound

With more studies, the lower confidence bound will tend to be higher (and with fewer it will tend to be lower)