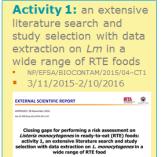
What is the impact of different factors on the exposure?

Panos N. Skandamis

Assoc. Prof. Agricultural University of Athens, Dep. Food Science & Human Nutrition, Member of EFSA WG Listeria

Stakeholder meeting, 19-20 Sep 2017



Factors impacting the prevalence and concentration of *L. monocytogenes* in RTE foods

Inputs:

- Baseline survey (2010-2011)
- EU monitoring data: official monitoring although harmonized to some extend, variable across Member States – difficult to be systematically used Activity 1: an extensive literature search and

Literature review

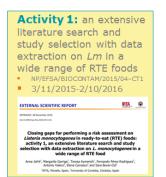
- Prevalence of L. monocytogenes
- Proportion of samples on the market >100 CFU/g
- Sparseness of data
- Varying stability in the associations between model outcomes & factors varied
- Several influential factors included in multivariate analysis, but not always stable
- Impact evaluated on the basis of Odds ratio
- Fish and meat products

Results of prevalence I (EFSA baseline survey)

(a) Fish

- Cold smoked > hot smoked
- Sliced > non sliced
- Products with ≥ 2 inhibitors > samples with no inhibitors

Results of prevalence I (EFSA Baseline study)


(b) Meat

- Pâté > cold meat products ≈ sausages
- Sliced > non sliced
- Proportion of samples with *L. monocytogenes* > 100 CFU/g:
- Animal species "all other species" > avian
- Remaining shelf life

Results of prevalence II (literature)

EXTENSIVE LITERATURE REVIEW Risk factors

- Processing environment, HACCP, food safety education
- Manufacturing & preparation practices (lethal step)
- Product characteristics (pH, a_w, etc.)
- Storage conditions (time-T)

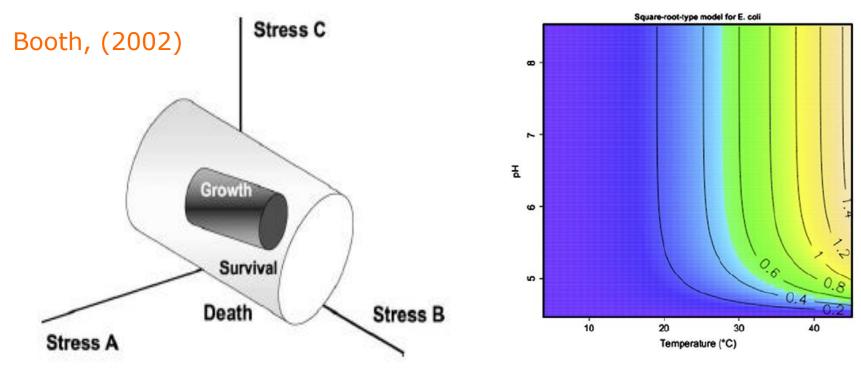
Results of prevalence II (literature)

INTERVENTION STUDIES

Activity 1: an extensive literature search and study selection with data extraction on Lm in a wide range of RTE foods NP/EFSA/BIOCONTAM/2015/04-CT1 3/11/2015-2/10/2016 IRTA 🔍 🔍 EXTERNAL SCIENTIFIC REPORT Closing gaps for performing a risk assessment or onocytogenes in ready-to-eat (RTE) foods activity 1, an extensive literature search and study tion with data extraction on L. monocytogenes in wide range of RTE food

sarita Carrina¹ Teresa Aumarich¹ Eemando Direz-Dodrinu in Valenn², Elena Carrason² and Sara Bover-Cid 1974 Monelle Spain ³University of Contribu Cóntoba Spain

- Scarcity of reports with naturally contaminated samples and industrial setting
- Disassembly and thorough cleaning/disinfection of production machines caused drastic reduction of *L. monocytogenes*

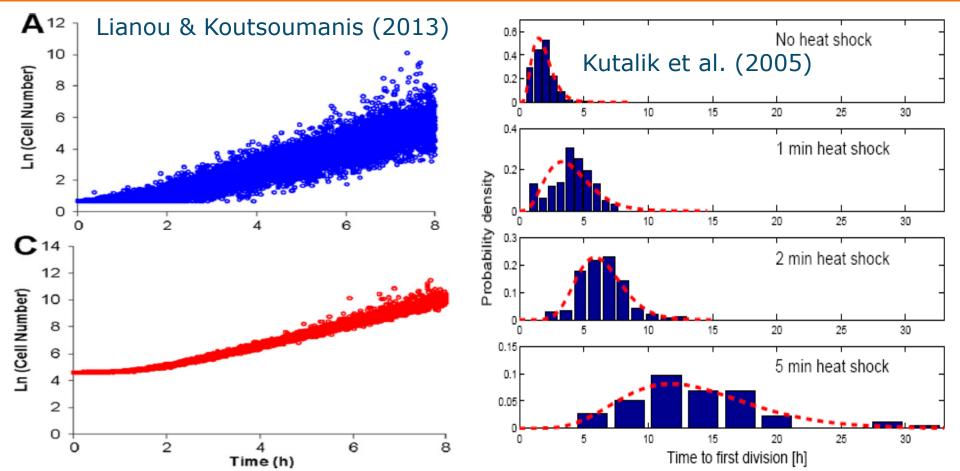

Growth, survival and inactivation of L. monocytogenes in food and in the food chain

- Cardinal secondary models (growth and G/NG interface)
- Cardinal models with stochastic terms describing the strain variability in growth limits/growth rates
- Impact of food microflora and food structure on L. monocytogenes growth
- Impact of pre-culture conditions and shifts in the food (micro-)environment on lag time of *L. monocytogenes*
- Single cell modelling: impact of cell heterogeneity lag time and generation time of individual cells
- Inactivation modelling (thermal and non-thermal)

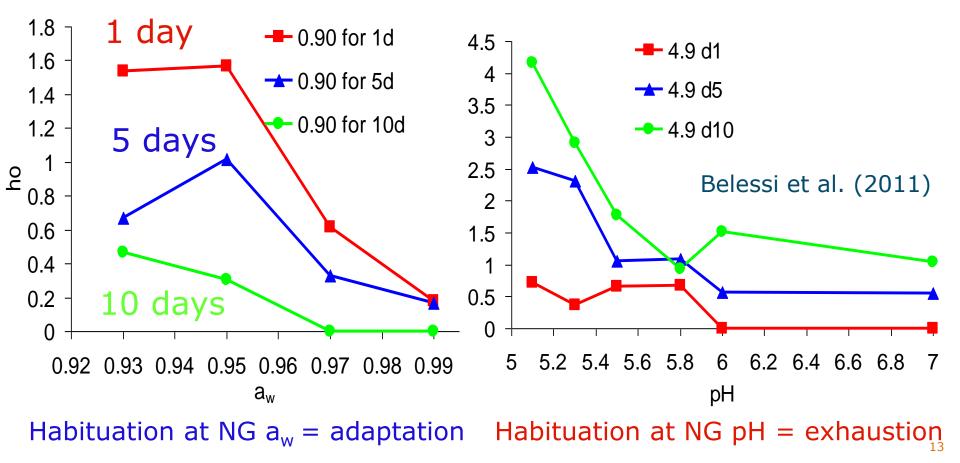
Cardinal models $\mu_{max} = \mu_{opt}.CM_2(T).CM_1(pH).SR(a_w).\xi$ Indicative components of the model 1. $CM_2(T)$: temperature term $\tau(T) = \left(\underbrace{(T - T_{\min}) \cdot (T - T_{\max})}_{(T_{\text{opt}} - T_{\min}) \cdot [(T_{\text{opt}} - T_{\min}) (T - T_{\min}) - (T_{\text{opt}} - T_{\max}) (T_{\text{opt}} + T_{\min} - 2T)]} \right)$ 2. CM₁(pH): pH term $(pH - pH_{min})^2 (pH - pH_{max})$ $(pH_{opt} - pH_{min}) \left[(pH_{opt} - pH_{min})(pH - pH_{opt}) + (pH_{opt} - pH_{max})(pH_{opt} - pH_{min}) - 2pH \right]$ 3. SR(a,,): a,, term $\sum_{i} \frac{\Phi_{e_{i}}}{2\prod_{j \neq i} \left(1 - \Phi_{e_{j}}\right)} \bigoplus \phi(T) = \left(\frac{T_{opt} - T}{T_{opt} - T_{min}}\right)^{3}$ $\phi(pH) = \left(\frac{pH_{opt} - pH}{pH_{opt} - pH_{min}}\right)^{3}$ $\phi(a_{w}) = \left(\frac{a_{w opt} - a_{w}}{a_{w oot} - a_{w min}}\right)^{3}$ Stochastic terms $SR(a_w) = \begin{cases} 0 & a_w \le a_w \min \\ (a_w - a_w \min \\ a_{wop} = a_w \min \\ 0 & a_w opt \le a_w \le a_w \max \\ 0 & a_w opt \le a_w \le a_w \max \\ 0 & a_w opt \le a_w \le a_w \max \\ 0 & a_w opt \le a_w \max \\ 0 & a_w \max \\ 0 & a_w opt \le a_w \max \\ 0 & a_w \max \\$ 4. Interaction term (ξ) $\xi = \begin{cases} \frac{1}{2}(1-\psi), & \frac{\psi \le 0.5}{0.5 < \psi < 1} \end{cases}$



Growth, survival and inactivation of *L. monocytogenes* in food and in the food chain



Growth, survival and inactivation of *L. monocytogenes* in food and in the food chain



INDIVIDUAL CELL HETEROGENEITY & STOCHASTIC BEHAVIOUR

IMPACT OF SHIFTS FROM NG TO G ON LAG TIME OF LM

QMRA:

Hazard identification, exposure assessment, hazard characterization & risk characterization

Risk characterization:

- Probability x severity
- Probability = f(exposure)
- Exposure = f(consumption frequency, serving size, prevalence, concentration resulting from direct transfer or growth/inactivation of *L. monocytogenes*)

Results from the review of QMRA outputs Deli meats

- Cross-contamination frequency (other products or environment)
- Prevalence/levels at processing plant
- Slicing at retail
- Storage time (22 d at retail & 5 d at home)
- Storage temperature: 7°C critical limit for risk reduction
- Growth inhibitors (preservatives)

Results from the review of QMRA outputs Fish products

- GROWTH is important. Attention to factors that control the concentration of *L. monocytogenes* at the time of consumption
 - Short time, low T
 - Competition with LAB
- Sensitivity of population through the dose response model

Results from the review of QMRA outputs Dairy products

- Raw milk: Storage temperature, time till consumption and purchase location (better buy from the farm)
- Increase pasteurization temperature (HTST concept) reduces background flora and favours
 L. monocytogenes growth
- Raw-milk cheese -> 53-112 fold higher risk than pasteurized-milk cheeses. Starters reduce the risk
- Soft-ripened cheese by pasteurized milk: avoid crosscontamination

Results from the outsourcing activity 2 risk assessment

- Complete QMRA: from retail to consumer
- Inputs (prevalence) from EU monitoring, BLS & literature
- Growth models
- Consumption data based on EFSA database
- Reduced Oxygen Packaging and slicing as practices
- Time-temperature data based on available reports
- Dose response by Pouillot et al. (2015) with varying susceptibility parameter

Activity 2: a guantita-

stage

EXTERNAL SCIENTIFIC REPORT

tive risk characterization on *Lm* in RTE foods; starting from the retail

1/10/2014-31/01/2017

Closing gaps for performing a risk assessment on *Listeria* monocytogenes in ready-to-eat (RTE) foods: activity 2, a quantitative risk characterization on *L. monocytogenes* in

RTE foods: starting from the retail stage

💷 IRTA

QMRA Outputs: Predicted number of listeriosis cases annually in the EU (population risk & public health burden)

RTE food subcategory	Elderly: > 65 years Population subgroups			
	Healthy ^(a)	Elderly ^(b)	Pregnant	TOTAL
Cold smoked fish	54 (42, 68)	201 (154, 254)	104 (75, 138)	358 (271, 460)
Hot smoked fish	NC (NC, 1)	1 (NC, 1)	6 (4, 8)	7 (4, 10)
Gravad fish	48 (33, 70)	230 (160, 320)	92 (63, 129)	370 (257, 519)
Cooked meat	71 (50, 98)	316 (218, 449)	477 (337, 659)	863 (604, 1207)
Sausage	64 (31, 118)	252 (120, 469)	225 (107, 417)	541 (258, 1003)
Pâté	12 (4, 27)	92 (28, 220)	54 (16, 130)	158 (48, 377)
Soft and semi-soft cheese	5 (2, 10)	11 (5, 20)	3 (1, 6)	19 (8, 36)
Total	254 (162, 392)	1,103 (685, 1,733)	961 (603, 1,487)	2,318 (1,450, 3,612)
	= 11%	= 48%	$= 41\%$ $P_{\rm in}$	$= 1 - e^{-r_A}$

QMRA Outputs: Predicted number of cases per risk per 10⁶ servings (individual & food related risk)

High risk scenaria:

- High risk for pregnant population regardless of product and this >> elderly >>> healthy
- Gravad fish sliced and packed under normal or ROP atmosphere (pregnant)
- Cold smoked vs hot smoked fish (pregnant)
- Cooked meat sliced/packaged aerobically (all groups)
- Sliced cheese (pregnant)

CONCLUSIONS

- Growth of *L. monocytogenes* = risk determining step. Storage times-T, antimicrobials & competition → <u>control the risk</u>
- At retail, cross-contamination of RTE foods from other products/retail environment = important risk factor
- Cooked meat (863) > sausage (541) > gravad fish (370) > cold smoked fish (358) > pâté (158) > soft and semi-soft cheese (19) and hot-smoked fish (7 cases)
- For hot-smoked fish and cooked meat, most cases attributed to the pregnant population, for the rest of food subcategories most cases were attributed to the elderly population (≥ 65 years old)
- Estimated risk/10⁶ servings in general highest for the pregnant population > elderly > healthy population
- Most cases predicted in the elderly (48%) > pregnant population (41%) > healthy population (11%)