


**Infant TDS** 

# Results of the ANSES study on dietary exposure of children under 3 years of age to chemical substances 2010-2016

29th Focal point meeting – Uppsala, Sweden

## Why an infant Total Diet Study



2

### The 3 phases of the Infant TDS



Sampling that reflects food consumption and practices

80-90% coverage of the diet

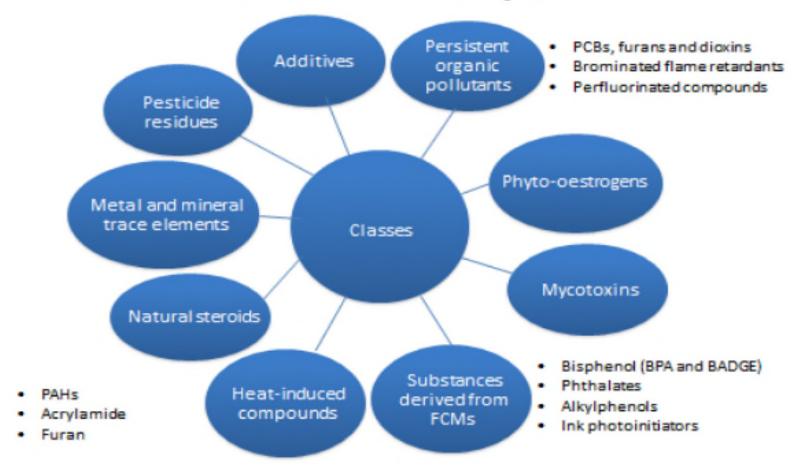
5484 products bought 457 composite samples





Accredited laboratories Lowest analytical limits

670 substances analysed




3. Assessment of chronic exposure

Children under 3 years of age non breastfed

### Phase 2: 670 substances analysed

#### 670 substances analysed



Dietary exposure assessed for 500 substances Risk assessed for 400 substances incl. 281 pesticide residues

## What the study can conclude

- The study aims to characterise the chronic dietary exposure (or intake) to substances of interest for children under 3 years who are not breastfed
- It does not aim to characterise:

| In terms of populations             | <ul> <li>The exposure of children who are breastfed</li> <li>The exposure of specific groups of populations, for instance premature children</li> <li>The exposure of children living outside of mainland France</li> </ul>           |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In terms of consumption             | <ul> <li>Special diets (e.g. only organic)</li> <li>Intake of food supplements</li> </ul>                                                                                                                                             |
| In terms of<br>exposure and<br>risk | <ul> <li>Acute exposure</li> <li>Exposure due to specific situations (local or accidental)</li> <li>Prenatal exposure</li> <li>Other routes of exposure (respiratory, dermal)</li> <li>Risk assessment of cocktail effects</li> </ul> |

anses

but is a source of data for subsequent work

## **Results presented**

#### o Risk Assessment

- General results
- Focus on substances for which risk cannot be excluded
- Recommendations

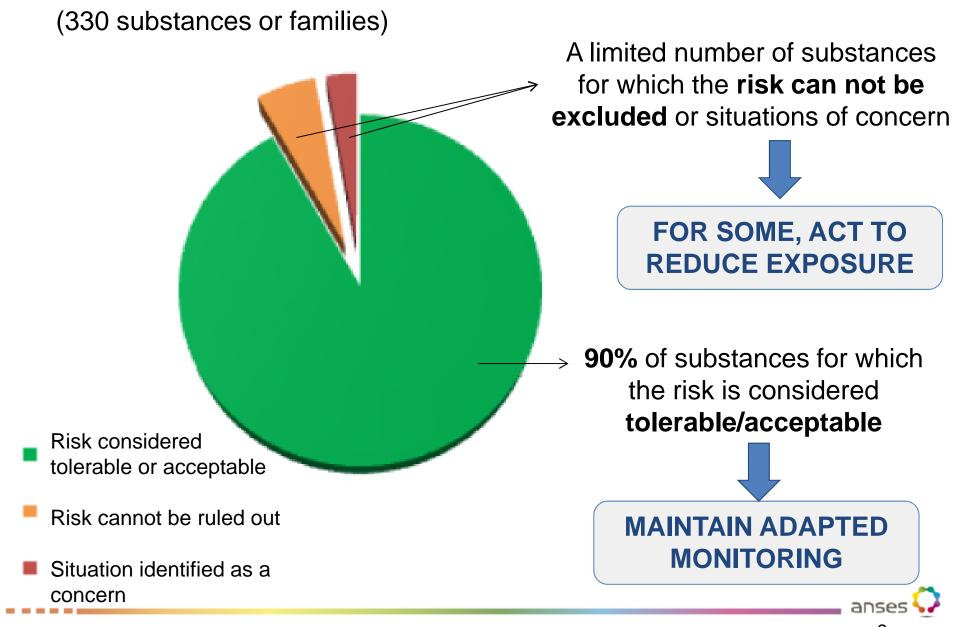
• Observations linked to food diversification

#### • Additional results

- Pesticide residues
- Water

#### • Nutritional risk assessment

anses 🔇 6

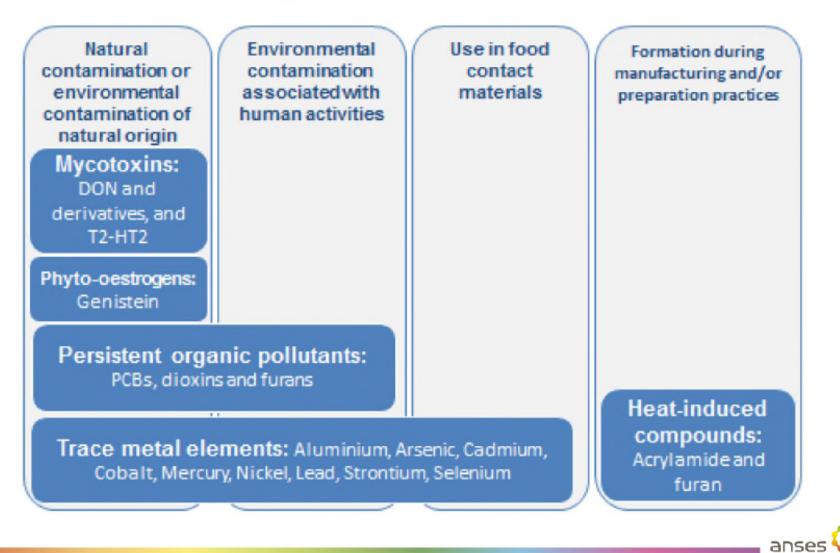

# **Risk assessment: 4 types of conclusions**

| What conclusion?                           | In which case?                                                              |  |  |
|--------------------------------------------|-----------------------------------------------------------------------------|--|--|
| Risk considered tolerable<br>or acceptable | Does not exceed the toxicity reference value                                |  |  |
| Risk cannot be ruled out                   | Uncertainties as to the observed exceedance of the toxicity reference value |  |  |
| Situation identified as a concern          | Significantly exceeds the toxicity reference value                          |  |  |
|                                            |                                                                             |  |  |

| Unable to conclude on the | Conditions do not allow for a       |
|---------------------------|-------------------------------------|
| risk                      | relevant assessment of health risks |

anses 🤇

## About 400 substances assessed




# **Reduce exposure: for which substances?**

| <br>9 Substances for which<br>the situation is identified<br>as a concern                                      |                  | 7 Substances for which<br>the risk cannot be<br>excluded             |
|----------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------|
| Inorganic arsenic<br>Lead<br>Dioxins and furans<br>PCBs<br>Deoxynivalenol and its<br>derivatives<br>Acrylamide | E<br>A<br>T<br>2 | Aluminium<br>Cadmium<br>Methylmercury                                |
| T2-HT2 toxins<br>Furan<br>Nickel                                                                               |                  | Cobalt, Strontium<br>Selenium (>1 year)<br>Genistein (soy consumers) |

# **Origin of the substances**

#### Origin of these substances



10

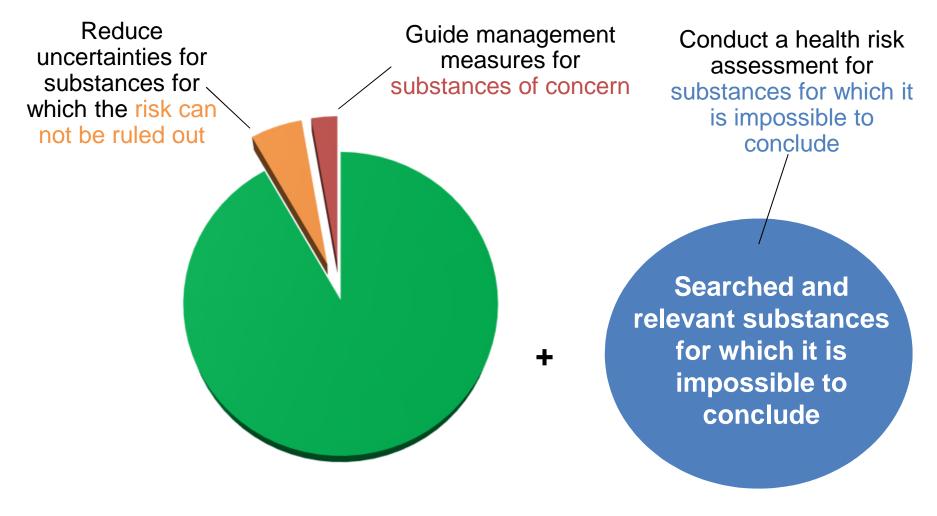
## Recommendations

#### Limiting exposure levels

- Policy to control releases into the environment
- Control of processes
- Establishment or reduction of regulatory thresholds

### Act on concentrations / content

- During the manufacturing or preparation of industrial products (acrylamide, furan)
- Better understand the origin of contamination (nickel in chocolate products, T2-HT2 in infant formulas)
- Review or implementation of regulations (acrylamide, furan, nickel, T2-HT2, PCBs, dioxins & furans, inorganic arsenic, lead, DON & derivatives)


#### Act on consumption

- Vary the diet to not always consume the most contaminated food (e.g. lead, aluminium)
- Establish/recall consumption recommendations
- fish for PCBs, selenium, methylmercury
- strongly mineralised mineral waters for strontium
- Soy products for genistein

### Further work to determine possible actions / levers

- Dioxins & furans (milk, ultra fresh milk products and fish)
- DON & derivatives (infant milk drinks with cereals, fruit & vegetable pots, biscuits & bread)
- Inorganic arsenic (vegetable /fish pots, rice, infant cereals)
- Cadmium (potatoes, vegetables)
- Cobalt

## Substances that require more knowledge

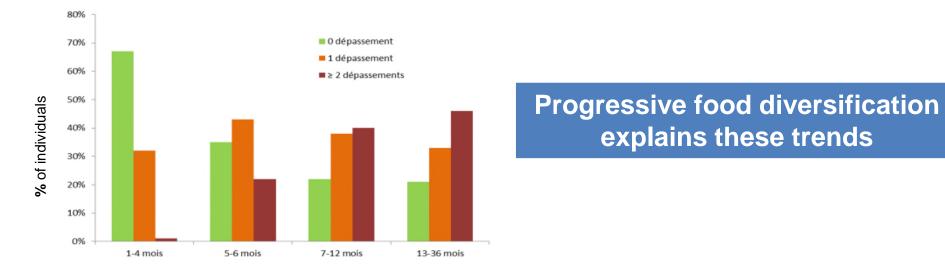


**About 90 substances** 

anses 📿 12

## Key messages of the Risk Assessment

An acceptable situation for 90% of the substances assessed


A limited number of substances for which the risk can not be ruled out, including 9 of concern

Continue efforts to **reduce exposure to certain substances** 

anses 📿 13

# **Co-exposure and food diversification**

Number of exceedances for some substances deemed of concern according to age



#### **Recommendations on food diversification**

Given these results, today, the Agency therefore advocates following the recommendations issued in the 2005 national Health and Nutrition Programme, namely, to begin food diversification from the age of 6 months for optimal benefit and in any event never before 4 months of age

### **Pesticide residues**

Improved analytical performance compared to EAT2

#### **469 RESIDUES SCREENED**

- 8% quantified at least once
- Quantification in 1/3 of the food samples analysed



17 relevant substances for which it is impossible to conclude

#### **281 SUBSTANCES EVALUATED**

#### **278 – ACCEPTABLE RISK**

none of the toxicity reference values were exceeded

#### **3 – RISK CANNOT BE RULED OUT due to**

uncertainties: lower the analytical limits to

#### conclude

- POPs: dieldrin, lindane
- Fungicide: propylene thiourea (metabolite)

## What about water?

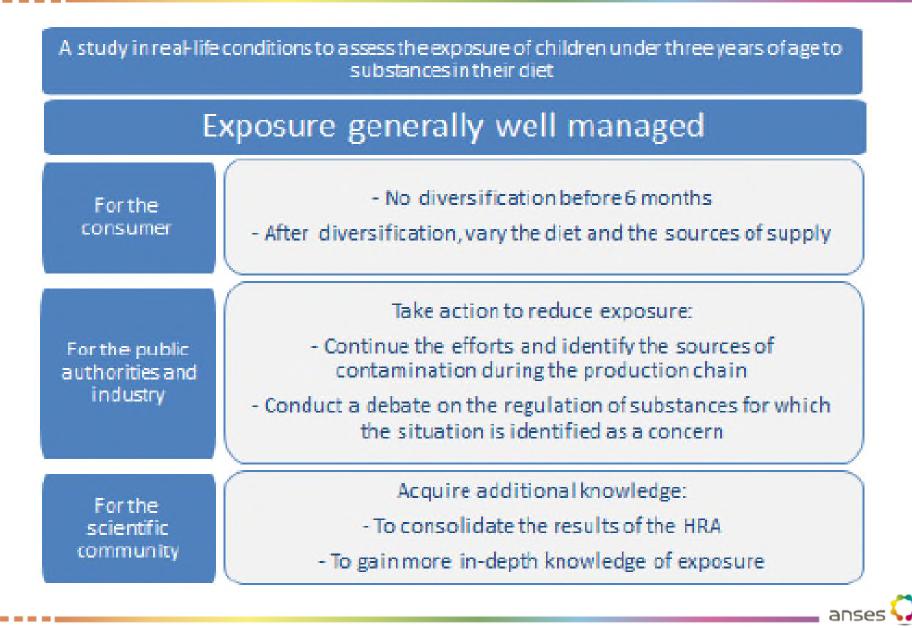
- Water accounts for a significant share of the food consumed by non-breastfed infants, in particular as it is used to reconstitute infant formulas for bottles
- However:
  - The study is based on the actual behaviour of parents and very few parents use tap water to dilute baby bottles
  - The study is not designed to allow comparison of the impact on exposure of the type of water used
  - The study is unable to recommend a type of water to use preferentially

In the absence of further results, the Agency reiterates that unsoftened and unfiltered tap water, is only suitable for reconstituting infant formula under certain conditions



# **Nutritional risk assessment**

#### **Results for mineral intake:**


| Intake generally<br>meets nutritional<br>needs to a<br>satisfactory level | <ul> <li>Iron &amp; zinc in children under 6 months</li> <li>Magnesium, calcium &amp; copper in those under 1 yr</li> <li>Manganese, selenium, molybdenum &amp; potassium in children under 3 yrs</li> </ul> |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inadequate intake                                                         | <ul> <li>Iron and zinc in children ages 7-36 months</li> <li>Calcium, magnesium and copper in children aged 13-36 months</li> </ul>                                                                          |
| Excess intake                                                             | Calcium & zinc                                                                                                                                                                                               |

- Need to take into account **all nutrients** to make **dietary recommendations**
- Lack of certain reference values in the targeted population

Ongoing work on the revision of food consumption benchmarks includes the definition of nutritional guidelines for infants

anses 🍾

## Important points to remember



18





6 years of work

More than 200,000 analytical results

Covering 97% of the diet of children under 3 years of age

5,484 products purchased, 457 samples

670 substances analysed

Dietary exposure assessed for 500 substances

Risk assessed for 400 substances, including 281 pesticide residues

anses 🖸 19

# **Prospects**

#### Aggregate exposure and substance mixtures

- Integration of all exposure routes for certain relevant molecules
- Identification of relevant substance cocktails in terms of public health and realist exposure
- Use of the iTDS results in Anses work and national studies (ANR COCTELL)

#### **Breast milk**

• Study implemented to analyse contamination of breast milk (CONTA-LAIT). Risk-benefit assessment.

#### **Other substances**

• Nanoparticles: study on nanomaterials found in food for children and adults

#### Data needs

- Susceptibility of the infant population
- Mechanism linked to endocrine-disruption

### Need to sustain monitoring tools to estimate exposure