

How to link test system to the prediction of developmental neurotoxicity (DNT)

Marcel Leist In Vitro Toxicology and Biomedicine Doerenkamp-Zbinden Chair , University of Konstanz, Germany

How to link test system to the prediction of developmental neurotoxicity (DNT)

Marcel Leist

In Vitro Toxicology and Biomedicine Doerenkamp-Zbinden Chair , University of Konstanz, Germany

OECD test guideline TG 426 defines animal DNT testing

OECD TG426 (DNT)

Rodent 22

Readouts: Pathology Function (sensory, motor, behavioural, ...)

Main feature:

Endpoint description of relative changes (e.g. brain size, spontaneous motor behaviour, etc..)

Problem:

What do the relative changes mean? Are the changes relevant to human development? Concordance between species: 60%

Human

Some key questions for moving ahead: what can we learn from the past and from other big fields?

- 1. What are the **assumptions** underlying the use of **animal models**?
- 2. Can we make similar **assumptions for in vitro models**?

3. What can we **learn from psychiatry**? (categories of models)

4. What can we **learn from biologics** drug production? (switch from endpoint control to process control)

Animals yield three categories of data

Conclusion I

1. Current models (animals) mainly model altered states (fixed endpoints)

2. Most endpoints relevant to man cannot be measured in animals (language disturbance, attention span, IQ, etc...)

3. Assumption to make animal models work:

there are changes of brain structure or organisation that are conserved; <u>external signs for such endogenous changes are used as surrogate endpoint</u>

Illustrations

Different phenotype, same brain changes...:

Augmented basal ganglia dopamine release (amphetamine): Hyperactivity in **animals** Psychosis in **humans**

Same phenotype (outside), different brain changes...:

Altered brain weight in **animals** due to loss of neurons Altered brain weight in **humans** due to reduced gliogenesis and neurite growth

Blindness in **animals** due to toxicity to retinal ganglia cells Blindness in **humans** due to reduced blood supply to optic nerve

Shoud we look at wrapping (outside) or at content (endogenous change)?

Can we learn from psychiatry/neurology research? (Research area > 1000-fold larger than DNT research)

Disease:

Disease symptoms can look very similar on the outside (→ phenotype, exophenotype), although they have, e.g. in genetic diseases, entirely different causes and internal changes

(→ endophenotype)

Models:

Models can from the outside look very similar to the disease
(→ face validity),
Models can refer to a similar internal/mechanistic working
(→ construct validity)

Conclusion (II) from brain sciences:

The biological changes ,**inside the brain**⁴ are an anchoring point to define a disease: They are called **<u>endophenotypes</u>**.

Models with construct validity refer to **comparable endophenotypes**, and allow comparisons between disease model and human disease

In toxicology:

predictive models reflect human-relevant toxicity endophenotypes.

The exophenotypes (reduced verbal memory, diminished executive functions, social anxiety etc.) are hard to model.

In toxicology: predictive models reflect human-relevant toxicity endophenotypes.

The exophenotypes (reduced verbal memory, diminished executive functions, social anxiety etc.) are hard to model.

What determines normal or non-normal brain structure (functional or structural connectivity)?

Right or wrong: defined by the **integrity of the processes** leading to the final state

Any toxicity endophenotype is the result of disturbances of one or more <u>fundamental neurodevelopmental processes</u>

Eventually, any DNT finding (man or animal) must be due to a combination of disturbed neurodevelopmental processes

If a compound does not disturb at least one process, it cannot be associated with a DNT hazard

In vivo Finding	Disturbed neurodevelopmental processes
Brain weight up/down	Proliferation, Apoptosis
Holoprosencephaly	Apoptosis, Neurodifferentiation
Lissencephaly	Apoptosis, Neurodifferentiation, Migration
Neuroinflammation	Astrocyte activation, Gliosis, Neurodegneration
Cortical layer thickness	Proliferation, Migration, Myelination
Disturbed reflexes	Neurodifferentiation, Myelination, Synaptic transmission
Anxiety behaviour	Neurodifferentiation, Synaptic transmission, Synapse formation

Toxicity endophenotypes (TEP) are linked to human and animal outcomes. How are test systems linked to TEP?

Lessons from the development of biologics (Erytropoietin, vaccines, blood factors,...)

End control:

The final product cannot be sufficiently controlled / described

Process control:

If every production step is OK, then end product is OK.

Process control for DNT hazard evaluation: measuring whether a compound disturbs any of the key neurodevelopmental

,The difficulty lies, not in the new ideas, but escaping the old ones'

Old idea: Prediction of safety from undisturbed phenotype

TEP: toxicity endophenotype

John Meynard Keynes:

,The difficulty lies, not in the new ideas, but escaping the old ones'

New idea:

Prediction of safety from undisturbed key processes

Old idea: Prediction of safety from undisturbed phenotype

TEP: toxicity endophenotype

test strategy for DNT

