Example of Non Intentional Added Substances (NIAS) evaluation

Assessment of multilayer plastic films treated by ionizing radiations

French national regulations / recommandations

French national regulations / recommandations

Results from concerns based on NIAS formation in plastic after ionizing radiations

Requirements for materials exposed to ionizing radiations (> 10 kGy)

- > Technological justification of the procedure.
- Material composition and compliance.
- Experimental conditions (type of radiations, dose rate...).
- Migration before / after radiations.
- Results concerning NIAS screening.

anses 📿

□ Parameters / conditions of the process:

- 3 different plastic films (PE) with thin layers (few µm) were treated.
- Each film is a multilayer material.
- Dose of radiations vary from 30 to 50 kGy.

□ Effects of ionizing radiations on the plastic films:

- Increase polymerisation in the same layer and between different layers.
- Increase mechanical structure of the material.
- Increase thermal resistance.
- Reduction of layers thickness to obtain the same efficiency.

NIAS risk assessment in 4 steps :

- 1. Identification / specific migration of IAS
- 2. Determination of the overall migration before / after radiations
- 3. Identification / quantification of NIAS before / after radiations
- 4. Determination of specific migration of NIAS

□ 1st step: Identification / specific migration of IAS

- Identification of IAS (monomers and additives) in each multilayer film
 Declaration of compliance
- Residual content of each substances was determined
- Specific migration was calculated for each susbtances (worst case)

$M = Q \times S \times T \times \rho$

- Q = quantity in the final product
- S = surface in contact
- T = thickness of the material
- P = density

2nd step : Determination of the overall migration (before / after radiations)

- Based on the COMMISSION REGULATION (EU) No 10/2011
- Simulants: Acetic acid, Ethanol 10%, oliveoil \rightarrow Isooctane

□ 3rd step : Identification / quantification of NIAS

- Predicted NIAS: targeted analysis of the known substances.
- Unpredicted NIAS: screening analysis of substances with wide range of properties

anse

□ 3rd step : Identification / quantification of NIAS

Predicted NIAS: targeted analysis of the known substance.

Unpredicted NIAS: screening analysis of substances with wide range of properties

→ GC/MS

□ 3rd step : Identification / quantification of NIAS

Analytical optimisation / performances

Objectives = $0.5 \mu g / kg$ food = $0.5 \mu g / person / d$ (threshold for no genotox testing)

Full extraction with Dichloromethane

 \Box LOQ = 0,7 mg / kg polymer (determined with alcane as a model).

 \langle 0,84 µg / kg food

□ 3rd step : Identification / quantification of NIAS

Analytical optimisation / performances

Objectives = $0.5 \mu g / kg$ food = $0.5 \mu g / person / d$ (threshold for no genotox testing)

Full extraction with Dichloromethane

 \Box LOQ = 0,7 mg / kg polymer (determined with alcane as a model).

 \Leftrightarrow 0,84 µg / kg food

 \Rightarrow Objective not met (0,5 µg / kg food)

□ 3rd step : Identification / quantification of NIAS

- > The identified substances were compared before and after ionizing radiations
- Main substances: aliphatic alcan, oxydation products and additives (antioxydants)
- After radiations: antioxydants \searrow and their oxidized states \nearrow
- 2 NIAS identified:

□ 4th step : Migration of NIAS

Choice of simulants according to the packaging use (all types of food):

- Isooctane and ethanol 95% (LOQ = $6 \mu g/kg$ food)
- Acetic acid 3% and ethanol 10% (LOQ = $30 \mu g/kg$ food)
- Contact conditions:
 - 2 days / 20° C for isooctane
 - 10 days / 60° C for ethanol 10%, ethanol 95% and acetic acid.

13

Simulants	Specific migrations (mg/kg food)	
	1,3 di-tert-butylbenzene	2,6 di-tert-butylphenol
Acetic acid	< 0,03	< 0,03
Ethanol 10%	< 0,03	< 0,03
Isooctane	0,012	0,012
Ethanol 95%	0,018	0,018
TEL (mg/person/d)	0,027	0,027

Exposure > 0,5 μ g / person / day \square 2 genotoxic assays.

14

12/08/2016

Statements

□ The lack of scientific knowledge increases NIAS levels of concern

□ Challenges for NIAS assessment ?

- ➢ We dont know what to look for ?
- ➢ How to analyse it ? Which analytical method? (NMR or IR efficient to scan but poor LOD)
- > NIAS at industrial level ? At consumer level ?

Conclusion / perspectives

- □ To acquire database for identification / quantitation of NIAS
- □ To take into account of their migration into the food
- □ To establish guidelines for their risk assessment
- □ To establish good manufacturing practices
- □ To enhance awareness among manufacturers, risk assessors, risk managers and users concerning NIAS from food contact materials.

THANK YOU

