

# **BfR activities on silicone**

Stefan Merkel



### 1. Silicone-Oligomers

2. Testing of volatile organic compounds



### **Overview**



### Silicone-Elastomer



## **Toxicological Data**

• What data is available and what data is needed?

| Studies for migration < 5 mg/kg food | D3               | D4           | D5           | <b>D</b> 6       | ≥ D7 |
|--------------------------------------|------------------|--------------|--------------|------------------|------|
| Not genotoxic                        | $\checkmark$     | $\checkmark$ | $\checkmark$ | $\checkmark$     | ×    |
| Subchronic toxicity (90d study)      | $\checkmark$     | $\checkmark$ | $\checkmark$ | $\checkmark$     | ×    |
| No bioaccumulation (ADME)            | ×                | $\checkmark$ | ✓            | (✓)              | ×    |
| Chronic toxicity                     | ×                | $\checkmark$ | $\checkmark$ | ×                | ×    |
| Carcinogenicity                      | ×                | $\checkmark$ | ✓            | ×                | ×    |
| Reproduction toxcitity               | (√)<br>screening | $\checkmark$ | $\checkmark$ | (√)<br>screening | ×    |

- D4 and D5 complete set of data, but
- Major studies only for inhalative exposure  $\rightarrow$  additional uncertainty for assessment
- For D3 and D6 reduced set of data
- For  $\geq$  D7 no data



### Hazard assessment / toxikological effects

- Not genotoxic
- Increase of liver weight  $\rightarrow$  considered as adaptive and not as adverse
- Increase of kidney weight in chronical study (persistent after recovery phase)
- Changed estrous cycle (but no effect on estrogen receptor)
- Increased growth of uterine mucosa (hyperplasy of endometrial epithelia)
- Increased number of benign and malignant tumors of the endometrium (endometrial adenomas and adenocarcinomas); threshold mechanism plausibel
- Relevance of observed effects for humans is unclear
- Possible accumulation of higher oligomers in humans is unclear



### Health based guidance value

- **BMDL**<sub>05</sub> (kindney weight, chronic inhalative study D4) = **84 ppm**
- Conversion to oral value: **BMDL**<sub>05</sub> = 21 mg/kg body weight/day  $\rightarrow$  higher oral uptake than inhalative uptake considered
- If: body weight = 60 kg and daily consumption = 1 kg food: acceptable migration = 13 mg/kg food

- Indication of same mode of action  $\rightarrow$  migration value for sum of probably absorbed oligomers
- Correction factor for increasing molecular weight  $F = \frac{M_{D4}}{M_{Dn}}$ ٠

• 
$$\sum_{n=3}^{13} \left( Migration_{Dn} * \frac{M_{D4}}{M_{Dn}} \right) \le 13 \ mg/kg$$



### Exposure Assessment / Risk Assessment

- Silicone oligomers show structural similarity, similar metabolites can be expected, comparable toxicological effects (not genotoxic, increase of liver and kidney weight) can be expected
- $\rightarrow$  Group assessment is considered useful
- $\rightarrow$  Oligomers up to D13 (<1000 Da) are considered as relevant
- $\rightarrow$  increase in kidney weight is considered as most sensitive toxicological endpoint
- High uncertainty due to limited migration data
- Migration data for cyclosiloxanes (D3-D7) from silicone bakings moulds into oil, MPPO, and tarte au chocolat show:
  - Results from oil and tarte au chocolat are comaparable with correction factor X/3 for fatty food
  - Sub-samples show different results probably due to inhomogeneous material
  - For samples that release less than 0,1% volatile organic components (testing 4 hours @ 200°C) no migration >50µg/kg in third migrate was observed
- $\rightarrow$  No exposure assessment with current data
- $\rightarrow$  A complete risk assessment can only be made with the availability of migration data from real foodstuffs



### 1. Silicone-Oligomers

2. Testing of volatile organic compounds



## Testing of Silicone FCM



The following requirement is listed in BfR-Recommendation XV. Silicones: "The silicone elastomers must release no more than 0.5 % volatile organic...components" (GMP requirement only)

- $\rightarrow$  Testing according to intendet use will be changed to testing for 4 hours @ 200°C for all uses
- → New gravimetric testing method developed by the NRL FCM with better reproducibility

| Parameter                        | Value                                   |  |  |
|----------------------------------|-----------------------------------------|--|--|
| sample amount                    | 10 g for each repetition                |  |  |
| sample preparation               | cut into pieces of approximately 1x2 cm |  |  |
| forced convection/<br>air supply | No convection and closed air supply     |  |  |
| weighing pan material            | Electroconductive                       |  |  |
| conditioning                     | $60 \pm 5$ min at $100 \pm 5$ °C        |  |  |
| cooling after conditioning       | $30\pm5$ min in desiccator              |  |  |
| tempering                        | 4 h $\pm$ 5 min at 200 $\pm$ 5 °C       |  |  |
| cooling after tempering          | $60 \pm 5$ min in desiccator            |  |  |

Sonderdruck aus "Bundesgesundheitsblatt" 1961, Nr. 8, S. 120-122

Springer-Verlag, Berlin · Göttingen · Heidelberg

Gesundheitliche Beurteilung von Kunststoffen im Rahmen des Lebensmittelgesetzes

7. Mitteilung \*



### Testing of Silicone FCM

- Conditioning of 1h@100 °C necessary to avoid false positive results ۲
- Swift handling is mandatory ٠
- Electroconductive material for weighting pans recommended ٠
- Labs (method validation study) performed satisfactory for all samples as long as ventilation is switched off ٠
- Adapted methods works very well with small standard deviations ٠
- Results of the MES allow the estimation of an expanded relative measurement uncertainty of only 25% at a ٠ probability of 95%

→ Method is available at BfR website: https://www.bfr.bund.de/cm/349/determination-of-volatile-compounds-insilicone-consumer-products.pdf





# Thank you for your attention

Bundesinstitut für Risikobewertung Max-Dohrn-Straße 8-10 • 10589 Berlin Telefon 030 - 184 12 - 0 • Fax 030 - 184 12 – 99 0 99 bfr@bfr.bund.de • www.bfr.bund.de

