

GREEK PROJECTS ON TARGETED AND SUSPECT SCREENING ANALYSIS OF PAPER & BOARD FOOD CONTACT MATERIALS

Stella Kontou

General Chemical State Laboratory, 2nd Chemical Service of Athens National Reference Laboratory for Food Contact Materials

e-mail: <u>s.kontou@aade.gr</u>, <u>fcm.gcsl@aade.gr</u>

I. Determination of targeted PFAS in paper FCMs by HS-GC-MS/MS (2020 PROJECT)

S.Kontou and E. Lampi

Post-Graduate Thesis (MSc) I. Maggina -Supervisor: Prof. N. Thomaidis

General Chemical State Laboratory

II. Targeted and suspect screening analysis of paper & board FCMs by UHPLC-qTOF (ON-GOING PROJECT)

S. Kontou, E. Dessipri, E. Kokkalis, D. Triantou and E. Lampi

General Chemical State Laboratory

Overall Objectives

- To identify and quantify toxic chemicals present or migrating from paper and board FCMs (targeted analysis of representative chemicals belonging to the groups of PFAS, PAAS, PIs, Bisphenols)
- To identify potential migrants from paper and board FCMs focusing on chemicals of emerging concern (suspect screening)
- To prioritize migrants for monitoring based on occurrence (suspect screening)

Determination of targeted PFAS in paper & board FCMs by HS-GC-MS/MS (2020)

Fluorotelomer alcohols (FTOHs)

Perfluorinated Sulfonamides (FASAs)

Perfluorinated Sulfonamidoethanols (FASEs)

- Not readily analyzed by the LC-MS/MS (ESI) methods used for the other PFAS
- Not easily ionizable
- Volatile (short-chain PFAS of the group)

To overcome these analytical challenges a HS-GC-MS/MS method was developed, optimized and validated

Targeted PFAS

Analytical method (HS-GC-MS/MS)

- 0,3 g finely cut sample weighed in 20 mL vial and 2 isotopically labelled IS (M2FOET & dNMeFOSA) are added
- $\circ~8$ mL H_2O and 0.6 g NaCl are introduced to the vial
- Analytes identified and measured by HS-GC-MS/MS analysis

GC-MS/MS: Shimadzu TQ 8040, Column: Mega–17MS (60 m x 0.25 x 0.25 μm)

SPME parameters	
Fiber	50/30
	DVB/CAR/PDMS
Fiber pre-conditioning	250°C/10 min
Sample Equilibration	65°C/10 mim
Sample Extraction	65°C/30 min
Sample Desorption	240°C/10 min

Analytical method (HS-GC-MS/MS)

Identity Confirmation: 2 MRMs and the MRM Intensity Ratio monitored, Retention time

PFAS	MRM quant	CE (V)	MRM qual	CE (V)
FTOH 4:2	244 > 196	3	196 > 127	7
FTOH 6:2	344 > 127	9	296 > 127	6
FTOH 8:2	396 > 127	6	127 > 77	14
N-MeFOSA	131 > 69	18	430 > 11	28
N-MeFOSE	526 > 169	18	462 > 93	21
N-EtFOSE	540 > 169	21	448 > 69	24

Analytical method (HS-GC-MS/MS)

- Quantitation: Matrix-matched calibration standards, 2 isotopically labelled IS (M2FOET & dNMeFOSA)
- Method validated
 Recoveries 75-130 %
 RSDs ≤ 15%
 LOQ: 20 ng g⁻¹

P&B samples analysed

32 samples collected in 2020 from super-markets, fast-foods, bakeries, coffee shops, restaurants etc

- Paper takeaway food containers (food boxes, pastry boxes, pizza boxes)
- Paper plates, bowls, coffee cups, ice cream cups, paper straws
- Paper bags for bread and bakery products and food wrapping paper
- Biodegradable sugar cane food containers
- Baking paper
- Paper cup cake cases

Results

- ✓ 28% of the paper samples tested were positive for FTOH 6:2
- ✓ FTOH 6:2 concentrations up to 1020 ng g⁻¹ were found^(*)
- ✓ FTOH 4:2, FTOH 8:2, N-MeFOSA, N-MeFOSE, N-EtFOSE were not detected in the samples tested

(*) Corresponds to a maximum			
theoretical migration of 23 ng g ⁻¹			
(for 6 dm ² /kg)			

Sample	FTOH 6: 2 (ng g ⁻¹)
Paper plate	1000
Paper food box	710
Paper bag for bakery products 1	998
Paper bag for bakery products 2	498
Burger wrap paper	685
Souvlaki wrap paper	795
Paper bag for hot food	80
Take away clam food container (sugar cane)	1020
Food tray (sugar cane)	70

Considerations on the findings

- These results indicate the prevalence of 6:2 FTOH over the 8:2 FTOH in paper & board FCMs in the Greek and by extension in the EU market (*).
- In 2020, the US FDA announced the voluntary phase-out, beginning in 2021, of the short-chain PFAS that contain 6:2 FTOH, following concerns about the biopersistence potential of 6:2 FTOH.
- Up to now, 6:2 FTOH has not been assessed by EFSA.

(*) It has been reported that 6:2 FTOH was dominant in paper & board FCMs produced in USA, as US industry replaced C8-PFAS with C6 – PFAS, whereas the 8:2 FTOH and other long-chain FTOHs were dominant in paper FCMs produced in China (Yuan et al., 2016, DOI: 10.1021/acs.est.5b03806)

Targeted and suspect screening analysis of paper & board FCMs by UHPLC-qTOF (on-going project)

- Aqueous and 95% EtOH extracts of paper & board FCM samples are analysed by UHPLC-qTOF using SWATH data acquisition mode (Sequential Window Acquisition of all Theoretical Mass Spectra)
- The analytical strategy includes:
 - Sample extracts analysed in both ESI (+) and ESI (-) ionization mode using 4 mobile phases : 2 for ESI(+) and 2 for ESI(-)
 - Targeted quantification of certain PFAS, PAAS, PIs, bisphenols in the sample extracts
 - Suspect screening analysis based on the construction of an in-house database (~200 compounds: PAAS, PIs, phthalates, BPA/alternatives/derivatives, biocides etc)

Sample preparation

qTOF : SCIEX X500R (SWATH mode) LC: Sciex ExionLC[™] AD Software: SCIEX OS 2.1. Column: Kinetex EVO C18 Core-Shell, (2.6 μm x 100 x 2.1 mm)

[A] based on EN 645

Suspect screening

Criteria for the identification of suspect compounds:

- Mass error of the precursor ion in the TOF MS spectra and the isotopic pattern fit are < 5ppm and > 85%, respectively
- Fragment ions in the TOF MS/MS spectra match to a high degree those predicted by the in-silico fragmentation of the corresponding suspect compound
- Fragment ions in the TOF MS/MS spectra match those of the corresponding suspect compound according to literature data, mass spectra libraries (e.g. Mass Bank)
- Retention Time and TOF MS/MS spectrum of the reference standard and the unknown peak - obtained in the same experimental conditions- coincide

Identity confirmed when the analytical standard is available.

Example: Identity confirmation BPF in a paper straw sample

PFAS: Analysis by UHPLC-qTOF

CONFIDENTIAL

PFAS: Preliminary results (UHPLC-qTOF)

CONFIDENTIAL

PAAS, PIs, bisphenols & chemicals in the in-house suspect list - Analysis by UHPLC-qTOF

Bisphenols: Preliminary results (UHPLC-qTOF)

CONFIDENTIAL

Targeted and suspect screening analysis of paper & board FCMs by UHPLC-qTOF On-going and future work

- Analysis of samples and data processing is still in progress.
- Tentatively identified chemicals of concern will be confirmed by reference standards and included in targeted monitoring.
- Examination of the SWATH data for potential identification of unexpected substances using chemical databases (e.g. ChemSpider) will follow.
- High Resolution mass spectra libraries specific for paper & board FCMs are needed

General Chemical State Laboratory

2nd Chemical Service of Athens Director: E. Lampi

FCM Laboratory

Head: S. Kontou

E. Dessipri, E. Kokkalis, D. Triantou