

SANTÉ ET ALIMENTATION AU CŒUR DE LA VIE

8<sup>th</sup> meeting of the Network on Food Contact Materials, European Food Safety Authority, Food Ingredients and Packaging Unit EFSA FIP Network on FCMs, Parma, Italy / Hybrid, 22<sup>nd</sup> – 24<sup>th</sup> November 2022

# French research project on oligoesters migrating from food can coatings (OLIGO)





Dr. Ronan CARIOU

Laboratoire d'Étude des Résidus et Contaminants dans les Aliments (LABERCA) UMR INRAE 1329, Oniris BP 50707, 44307 Nantes Cedex 3, France - www.laberca.org

### Outline



• Context and research question



• A preliminary study on vegetable cans



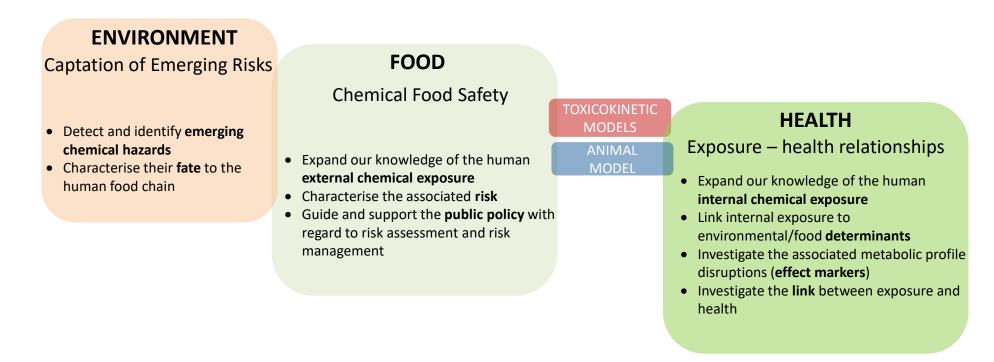
• OLIGO, an on-going collaborative project







### LABERCA


LABoratoire d'Étude des Résidus et Contaminants dans les Aliments ~70 persons Nantes LABERCA MINISTÈRE DE L'AGRICULTURE Oniris INRAO ET DE L'ALIMENTATION NRL JOINT RESEARCH UNIT **PLATFORMS** Growth **MELISA** POPs FOOD HEALTH HBM Promotors ACCREDITATION COFRAC COFrac ACCREDITATION COFRAC COFrac des analyses Nº 1-0549 ESSAIS des analyses Nº 1-0549 ESSAIS Intertek Portée disponible Portée disponible sur www.cofrac.fr sur www.cofrac.fr Intertek



## LABERCA

### Research question

Expanding knowledge of the human chemical exposome to better investigate possible associations between exposure and human health



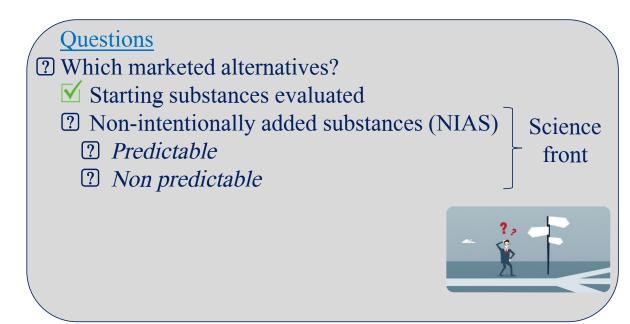


## Context and research question

### From BPA to alternatives

## FCM / varnishes and coatings

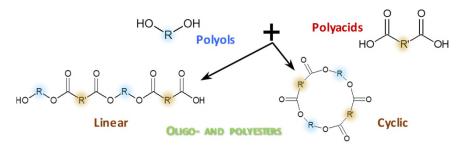
SML 0.05 mg/kg food Not permitted for infant food


Bisphenol A (epoxy resins)



Banned since 2014 ⇒ Distortion of the Single market




On-going re-evaluation ⇒ Expected decrease of TDI



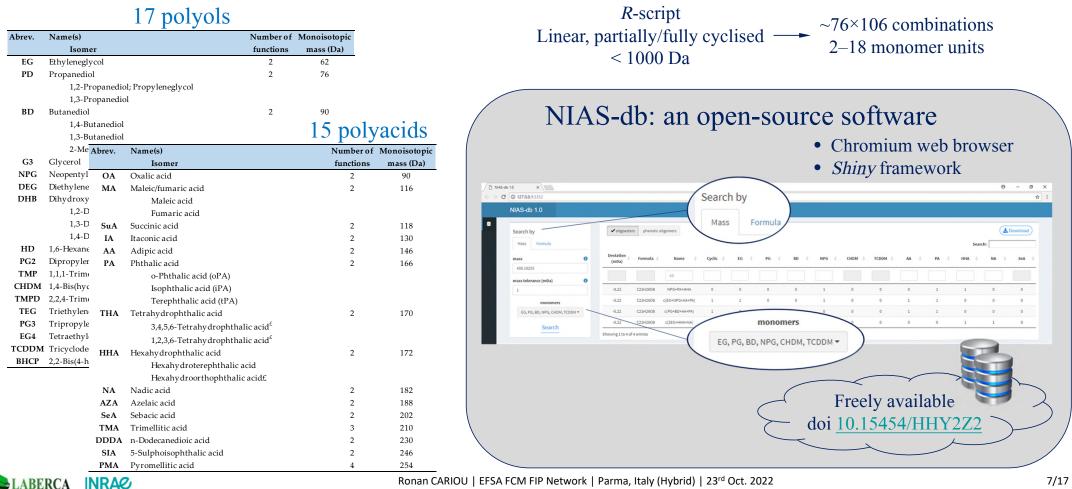


### Synthesis of reference compounds

A priori indication of polyesters

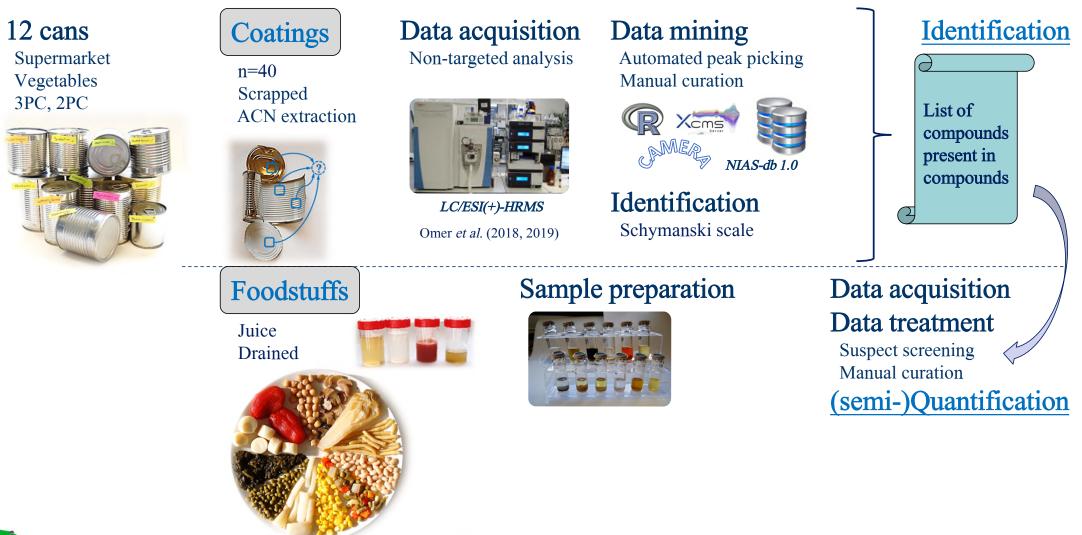


Lack of reference oligoesters

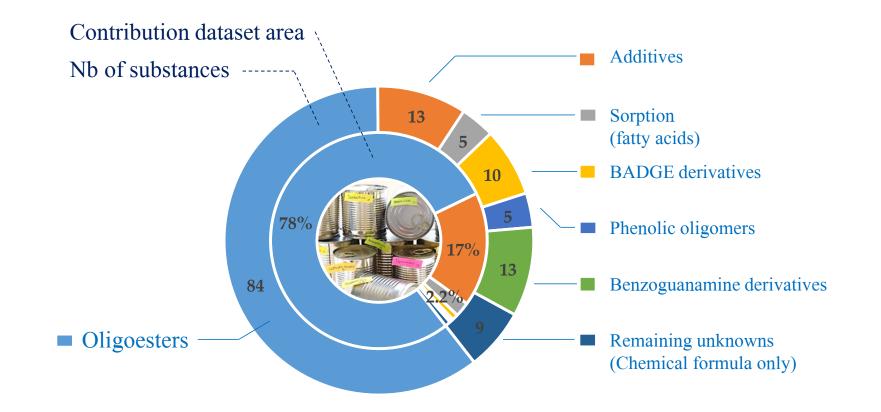



⇒ Synthesis of native and D-labelled combinations of neopentyl glycol (NPG) & isophthalic acid (iPA)




### Database of predictable oligoesters

### Combinations of monomers (ResAP(2004)1, + nadic acid)



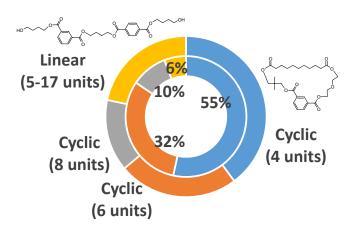


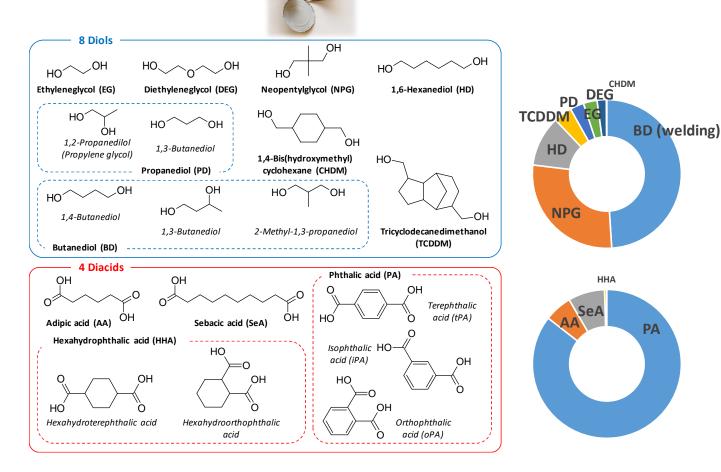

# Study design



### 139 substances in coatings





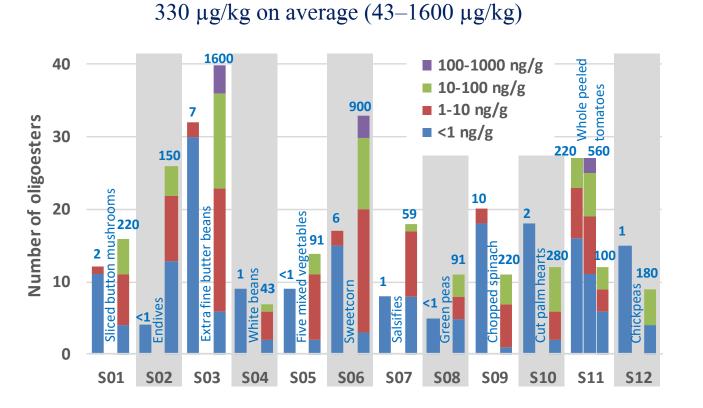


Ronan CARIOU | EFSA FCM FIP Network | Parma, Italy (Hybrid) | 23rd Oct. 2022

Overview in coatings

### Oligoesters in coatings

84 combinations78% relevant signal38 out of 40 coatingsMost are Cramer class III






## Oligoesters in coatings



n=68 combinations migrating to drained vegetables

<u>Σoligoesters</u>



# Oligoesters in foodstuffs

#### Most prevalent combinations (n=18, mean >5 µg/kg)

c(2NPG+2PA) c(2DEG+2PA)

- c(DEG+NPG+PA+SeA)
- c(EG+NPG+PA+SeA)
- c(DEG+NPG+2PA)
- · c(EG+DEG+2PA)
- · c(EG+DEG+PA+SeA)

· c(EG+NPG+PA+AA)

c(2BD+PA+AA)

· c(2NPG+PA+AA)

- lin(3NPG+PA+AA)
- c(2NPG+2AA)

lin(3NPG+2PA)
c(NPG+HD+2PA)

c(2HD+2PA)

L(ZHD+ZPA)

c(2BD+2PA)

lin(3DB+2PA)

c(2BD+PA+SeA)





### Epoxidised soybean oil

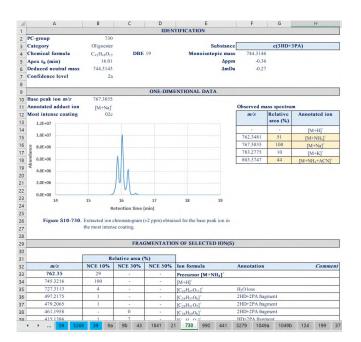


In coatings 17% relevant signal 8 out of 12 top-end coatings



In foodstuffs Inadequate sample preparation

- ⇒ Plasticiser
- ⇒ Commonly found in PVC-based FCMs (*e.g.*, gaskets of metal lids)
- ⇒ Exposure assessments seem to disregard exposure from metal can coatings (EFSA, 2004; Bandele et al., 2018)



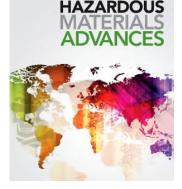

#### More details in Resear

Research Paper

Thorough investigation of non-volatile substances extractible from inner coatings of metallic cans and their occurrence in the canned vegetables

Ronan Cariou<sup>a,\*</sup>, Matthieu Rivière<sup>b</sup>, Sébastien Hutinet<sup>a</sup>, Asmaa Tebbaa<sup>a,b</sup>, Didier Dubreuil<sup>b</sup>, Monique Mathé-Allainmat<sup>b</sup>, Jacques Lebreton<sup>b</sup>, Bruno Le Bizec<sup>a</sup>, Arnaud Tessier<sup>b</sup>, Gaud Dervilly<sup>a</sup>






doi 10.1016/j.jhazmat.2022.129026

### Detailed supporting information

NIAS-db Synthesis Sample preparation development 1 Excel sheet per compound (EIC, main ions, annotated MS<sup>2</sup> fragments)

Ronan CARIOU | EFSA FCM FIP Network | Parma, Italy (Hybrid) | 23rd Oct. 2022



Summary

-11

### OLIGO

# Mon-going research project

### Funding and support



- 2021 ANR generic call Food and Food Systems committee
  - ⇒ OLIGO => 469 k€, 2021-2025 (ANR-21-CE21-0005)



• Competitiveness cluster (no funding) Agri-food area, North-west France





### **OLIGO**

# On-going research project

#### Partners



Ronan Cariou P1-LABERCA









EISAM







Nicolas Cabaton P4-TOXALIM





Nawel Bemrah P5-Anses anses



**Grégory Pieters** CEA



### SAB members



Cristina Nerín University of Zaragoza, Spain

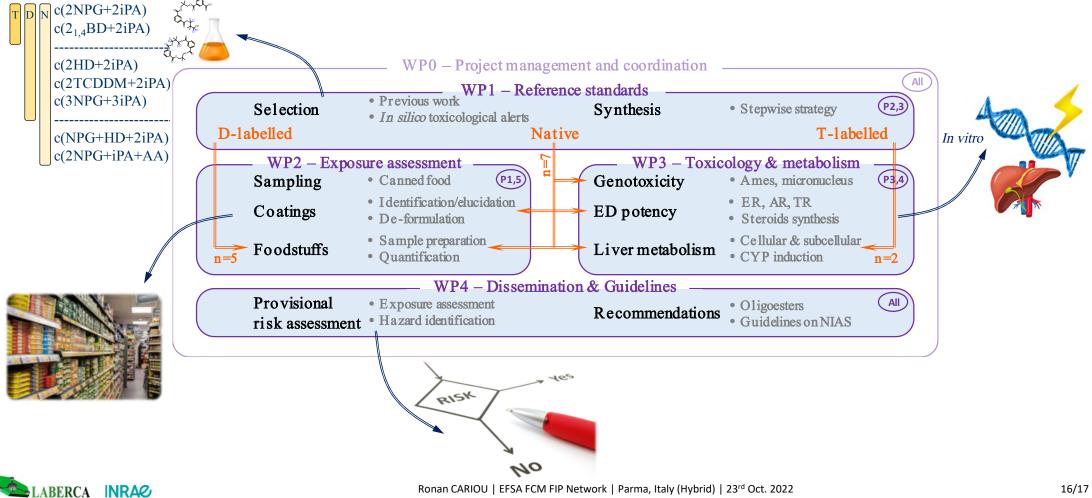


Technische Universität Dresden, Germany



Åke Bergman Örebro University, Sweden




Eric Barthélémy EFSA, Italy



### **OLIGO**

# On-going research project

### Oligoesters migrating from food can coatings – Filling risk assessment gaps





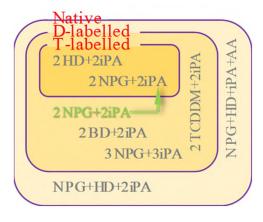


### Thank you for your attention!







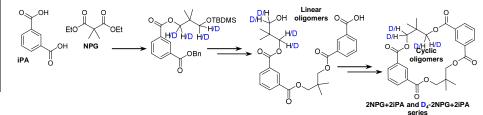

# Annexes, just in case...

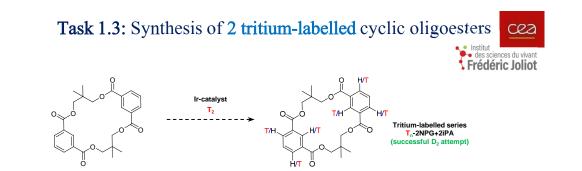


### WP1 – Organic synthesis

| Work packag                                                            | e number         | WP1                             | Schedule                                                                               | M1 to M24 |  |
|------------------------------------------------------------------------|------------------|---------------------------------|----------------------------------------------------------------------------------------|-----------|--|
| Work package title ORGANIC SYNTHESIS OF REFERENCE AND LABELLED STANDAR |                  |                                 |                                                                                        |           |  |
| Participants                                                           |                  | P2-CEISAM (lead)                | 2-CEISAM (lead) P3-LNC P1-L                                                            |           |  |
| <ul> <li>Availab</li> </ul>                                            | oility of a sele |                                 | <i>ico</i> methodologies<br>goesters to all consortium p<br>MS techniques, with high d |           |  |
| Deliverables                                                           |                  |                                 |                                                                                        |           |  |
|                                                                        |                  | fying the finalised list of oli |                                                                                        |           |  |

#### Task 1.1: Determination of monomer combinations to be synthesised




n=7, chemical purity >97%

~35 new intermediate products

**Task 1.4:** Synthesis of **5 deuterium-labelled** cyclic oligoesters n=5, chemical purity >97%





Ronan CARIOU | EFSA FCM FIP Network | Parma, Italy (Hybrid) | 23rd Oct. 2022

19/17



### WP2 – Exposure assessment

| Work package number | WP2                 | Schedule |  | M13 to M36 |  |
|---------------------|---------------------|----------|--|------------|--|
| Work package title  | EXPOSURE ASSESSMENT |          |  |            |  |
| Participants        | P1-LABERCA (lea     | ad)      |  | P5-ANSES   |  |
|                     |                     |          |  |            |  |

#### Objectives

- To document the prevalence of oligoesters in metal can and lid coatings marketed for France
- To document the occurrence of oligoesters in the diet in France

| Deliverables |                                                                               | Due date |  |
|--------------|-------------------------------------------------------------------------------|----------|--|
| • D2.1       | Stored sample set of representative coatings and foodstuffs                   | M18      |  |
| • D2.2       | Database on the occurrence of oligoesters in can coatings marketed for France | M30      |  |
| • D2.3       | Characterised method dedicated to oligoesters in foodstuffs                   | M30      |  |
| • D2.4       | Report on the occurrence of oligoesters in foodstuffs in France               | M36      |  |

#### Task 2.1: Can sampling

• Representative sampling plan of food-containing metal FCMs (n=100 items, ~350 coatings)



- Based on food consumption habits of the French population
- Food type stratification, can shape/capacities, brand names and retailers will be considered
- Vegetables, seafood, meat products, ready-made dishes, beverages and infant milk formulas, ...
- No seasonal or regional specificities are anticipated
- Food separated from coatings



#### Task 2.2: Identification of oligoesters in can coatings





- Acetonitrile extraction
- Non-targeted LC-ESI(+)-HRMS acquisition
- Data mining (*R*, databases, MS<sup>2</sup>, Schymanski scale)







• Analysis of monomers after hydrolysis (n=20)



# Task 2.3: Sample preparation for determining oligoesters in foodstuffs

- Sample preparation (LLE, lipids removal)
- Characterisation of performances

# Task 2.4: Quantification of oligoesters in foodstuffs

- Semi-quantification
- Isotopic dilution (D-labelled standards)



LABERCA INRAØ

### WP3 – Toxicology and metabolism

Perturbateur endocrinie

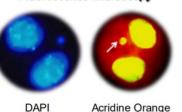
| Work package number | WP3                                            | Schedule | M13 to M42 |  |
|---------------------|------------------------------------------------|----------|------------|--|
| Work package title  | TOXICOLOGY AND METABOLISM                      |          |            |  |
| Participants        | ts P3-LNC (co-lead) P4-TOXALIM (co-lead) P1-LA |          |            |  |
| Objectives          |                                                |          | •          |  |

#### Objectives

- To assess the genotoxicity and ED potency of the selected oligoesters
- To elucidate the human liver metabolism of two representative oligoesters
- To assess the effects of oligoesters on key CYP450 enzymes

| Deliverables |                                                                            | Due date |
|--------------|----------------------------------------------------------------------------|----------|
| • D3.1       | Report on the genotoxicity and mode of action with the ED potency of major |          |
|              | oligoesters and their main metabolites                                     | M36      |
| • D3.2       | Report on the human liver metabolism of 2 radiolabelled oligoesters        | M36      |
| • D3.3       | Report on the effects of oligoesters on key CYP450 enzymes                 | M36      |

#### Task 3.1: Genotoxicity assays **OECD** Guidelines




**Positive Control** 



- Bacterial reverse mutation assay on Salmonella typhimurium (Ames test) -> Detection of gene mutations (OECD guideline no. 471)
- Micronucleus assay -> Detection of chromosomal aberrations in human hepatoma cell line HepG2 (OECD guideline no. 487)





Fluorescence microscopy







#### Ronan CARIOU | EFSA FCM FIP Network | Parma, Italy (Hybrid) | 23rd Oct. 2022

#### Task 3.2: Endocrine disruption potency



ène de la Lucif

Luciféras

Réactio

antification de l'activation de

la transcriptio

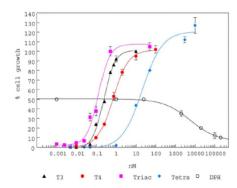
(anti)Estrogenic activity (OECD guideline no. 455)

->Transcriptional activation assay (TA) on human cell line (hERαHeLa-9903 cells)

- (anti)Androgenic activity ->MDA-kb2 cell line stably transfected with the murine mammalian tumor virus (MMTV)-luciferase.neo reporter gene construct
- Thyroid hormone receptors (TRs) ->T-Screen bioassay, involving the GH3 rat tumor cell line that expresses the thyroid hormone receptors and depends on the presence of T3 hormone for growth

CYP19

CYP19 17 B-HSD


CYP17 Cholestérol → Prégnénolone → 17α-0H Prégnénolone → DHEA

CYP11B1

Cortisol

CYP17

CYP1181/82



• EDCs that induce change in the production of estradiol and testosterone (indirect mechanism of action)

-> H295R steroidogenesis assay (OECD guideline no. 456) involving a human adenocarcinoma cell line (NCI-H295R)

| Work package number | WP3 Schedule              |                      | M13 to M42 |  |
|---------------------|---------------------------|----------------------|------------|--|
| Work package title  | TOXICOLOGY AND METABOLISM |                      |            |  |
| Participants        | P3-LNC (co-lead)          | P4-TOXALIM (co-lead) | P1-LABERCA |  |
| Objectives          |                           |                      |            |  |

- To assess the genotoxicity and ED potency of the selected oligoesters
- To elucidate the human liver metabolism of two representative oligoesters
- To assess the effects of oligoesters on key CYP450 enzymes

| D | <b>Deliverables</b> |                                                                            | Due date |
|---|---------------------|----------------------------------------------------------------------------|----------|
|   | • D3.1              | Report on the genotoxicity and mode of action with the ED potency of major |          |
|   |                     | oligoesters and their main metabolites                                     | M36      |
|   | • D3.2              | Report on the human liver metabolism of 2 radiolabelled oligoesters        | M36      |
|   | • D3.3              | Report on the effects of oligoesters on key CYP450 enzymes                 | M36      |

#### Task 3.3: Human liver metabolism

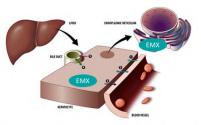
#### 1) Biotransformation pathways

#### 2 <sup>3</sup>H-labelled oligoesters



HepaRG cell line + human M/F subcellular fractions

Oligoesters and/or metabolites


- Mass balance, metabolic profiling (radio-HPLC detection)
- Structural characterization of main metabolites (LC-MS<sup>n</sup>, NMR)
- Production, purification and test of their ED potencies

### WP3 – Toxicology and metabolism

#### 2) Effects on key CYP450 enzymes

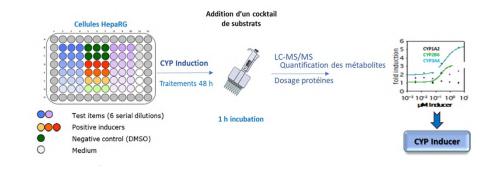






Localisation des EMX de phase I et II dans un hépatocyte

CYP3A


(d'après van Groen BD et al., Pharmacol Rev., 2021) 1-5. Transporteurs hépa

Cytotoxicity assays: range of noncytotoxic concentrations for the 7 oligoesters

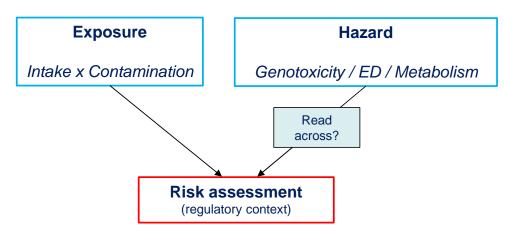
\_\_\_\_\_\_

Key CYP450 enzymes' induction assay for the 7 oligoesters (according to draft test guideline TM2009-14)

→ Their potential to induce CYP1A2, CYP3A4 and CYP2B6 activities (mediated *via* AhR, PXR and CAR receptors respectively) will be measured.



Bernasconi et al., Toxicol In Vitro, 2019 https://doi.org/10.1016/j.tiv.2019.05.019




### WP4 – Dissemination

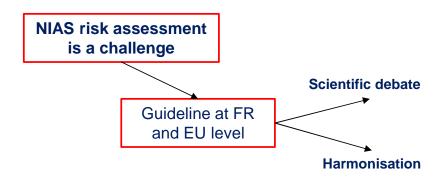
| Work package                                                                                                                                                                                                   | number | WP4         Schedule         M30 to M42                                                                                |  |  | 0 to M42 |  |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------|--|--|----------|--|----------|
| Work package                                                                                                                                                                                                   | title  | DISSEMINATION AND GUIDELINES                                                                                           |  |  |          |  |          |
| Participants                                                                                                                                                                                                   |        | P1-LABERCA P2-CEISAM P3-LNC P4-TOXALIM P5-A<br>(lead)                                                                  |  |  |          |  | P5-ANSES |
| <ul> <li>Objectives</li> <li>To valorise produced original data</li> <li>To perform a provisional risk assessment</li> <li>To draft official guidelines for the risk assessment of NIAS in coatings</li> </ul> |        |                                                                                                                        |  |  |          |  |          |
| Deliverables                                                                                                                                                                                                   |        |                                                                                                                        |  |  |          |  |          |
| • D4.1 Submitted peer-review articles on genotoxicity/ED potency, metabolism and prevalence in foodstuffs M39                                                                                                  |        |                                                                                                                        |  |  |          |  |          |
|                                                                                                                                                                                                                |        | I peer-review article on provisional risk assessment of oligoestersM42NSES guideline on the risk assessment of NIASM42 |  |  |          |  |          |

#### Task 4.2: Provisional risk assessment

Task 4.3: Guideline on NIAS in coatings



#### => See slide on expected impacts


#### Task 4.1: Dissemination of the scientific results

#### Articles

- Genotoxicity/ED potency
- Human liver metabolism
- Prevalence of oligoesters in foodstuffs

#### **Symposiums**

• 8 travels,  $\geq$ 6 events



